Real quadratic number fields with metacyclic Hilbert $2$-class field tower
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 177-190
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb Q(\sqrt d)$ that have a metacyclic nonabelian Hilbert $2$-class field tower.
We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb Q(\sqrt d)$ that have a metacyclic nonabelian Hilbert $2$-class field tower.
DOI : 10.21136/MB.2018.0102-17
Classification : 11R11, 11R29, 11R37
Keywords: class field tower; class group; real quadratic number field; metacyclic group
@article{10_21136_MB_2018_0102_17,
     author = {Essahel, Said and Dakkak, Ahmed and Mouhib, Ali},
     title = {Real quadratic number fields with metacyclic {Hilbert} $2$-class field tower},
     journal = {Mathematica Bohemica},
     pages = {177--190},
     year = {2019},
     volume = {144},
     number = {2},
     doi = {10.21136/MB.2018.0102-17},
     mrnumber = {3974186},
     zbl = {07088844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0102-17/}
}
TY  - JOUR
AU  - Essahel, Said
AU  - Dakkak, Ahmed
AU  - Mouhib, Ali
TI  - Real quadratic number fields with metacyclic Hilbert $2$-class field tower
JO  - Mathematica Bohemica
PY  - 2019
SP  - 177
EP  - 190
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0102-17/
DO  - 10.21136/MB.2018.0102-17
LA  - en
ID  - 10_21136_MB_2018_0102_17
ER  - 
%0 Journal Article
%A Essahel, Said
%A Dakkak, Ahmed
%A Mouhib, Ali
%T Real quadratic number fields with metacyclic Hilbert $2$-class field tower
%J Mathematica Bohemica
%D 2019
%P 177-190
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0102-17/
%R 10.21136/MB.2018.0102-17
%G en
%F 10_21136_MB_2018_0102_17
Essahel, Said; Dakkak, Ahmed; Mouhib, Ali. Real quadratic number fields with metacyclic Hilbert $2$-class field tower. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 177-190. doi: 10.21136/MB.2018.0102-17

[1] Azizi, A., Mouhib, A.: On the rank of the 2-class group of $\mathbb Q({\sqrt m},{\sqrt d})$ where $m=2$ or a prime $p\equiv 1\pmod 4$. Trans. Am. Math. Soc. 353 (2001), French 2741-2752. | DOI | MR | JFM

[2] Azizi, A., Mouhib, A.: Capitulation of the 2-ideal classes of biquadratic fields whose class field differs from the Hilbert class field. Pac. J. Math. 218 French (2005), 17-36. | DOI | MR | JFM

[3] Benjamin, E., Lemmermeyer, F., Snyder, C.: Real quadratic fields with abelian 2-class field tower. J. Number Theory 73 (1998), 182-194. | DOI | MR | JFM

[4] Berkovich, Y., Janko, Z.: On subgroups of finite $p$-group. Isr. J. Math. 171 (2009), 29-49. | DOI | MR | JFM

[5] Martinet, J.: Tours de corps de classes et estimations de discriminants. Invent. Math. 44 French (1978), 65-73. | DOI | MR | JFM

[6] Mouhib, A.: On the parity of the class number of multiquadratic number fields. J. Number Theory 129 (2009), 1205-1211. | DOI | MR | JFM

[7] Mouhib, A.: On 2-class field towers of some real quadratic number fields with 2-class groups of rank 3. Ill. J. Math. 57 (2013), 1009-1018. | DOI | MR | JFM

[8] Mouhib, A.: A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower. Ramanujan J. 40 (2016), 405-412. | DOI | MR | JFM

[9] Taussky, O.: A remark on the class field tower. J. London Math. Soc. 12 (1937), 82-85. | DOI | MR | JFM

Cité par Sources :