Real quadratic number fields with metacyclic Hilbert $2$-class field tower
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 177-190
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb Q(\sqrt d)$ that have a metacyclic nonabelian Hilbert $2$-class field tower.
DOI :
10.21136/MB.2018.0102-17
Classification :
11R11, 11R29, 11R37
Keywords: class field tower; class group; real quadratic number field; metacyclic group
Keywords: class field tower; class group; real quadratic number field; metacyclic group
@article{10_21136_MB_2018_0102_17,
author = {Essahel, Said and Dakkak, Ahmed and Mouhib, Ali},
title = {Real quadratic number fields with metacyclic {Hilbert} $2$-class field tower},
journal = {Mathematica Bohemica},
pages = {177--190},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {2019},
doi = {10.21136/MB.2018.0102-17},
mrnumber = {3974186},
zbl = {07088844},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0102-17/}
}
TY - JOUR AU - Essahel, Said AU - Dakkak, Ahmed AU - Mouhib, Ali TI - Real quadratic number fields with metacyclic Hilbert $2$-class field tower JO - Mathematica Bohemica PY - 2019 SP - 177 EP - 190 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0102-17/ DO - 10.21136/MB.2018.0102-17 LA - en ID - 10_21136_MB_2018_0102_17 ER -
%0 Journal Article %A Essahel, Said %A Dakkak, Ahmed %A Mouhib, Ali %T Real quadratic number fields with metacyclic Hilbert $2$-class field tower %J Mathematica Bohemica %D 2019 %P 177-190 %V 144 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0102-17/ %R 10.21136/MB.2018.0102-17 %G en %F 10_21136_MB_2018_0102_17
Essahel, Said; Dakkak, Ahmed; Mouhib, Ali. Real quadratic number fields with metacyclic Hilbert $2$-class field tower. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 177-190. doi: 10.21136/MB.2018.0102-17
Cité par Sources :