Keywords: distributive nearlattice; annihilator; $\alpha $-filter
@article{10_21136_MB_2018_0101_17,
author = {Calomino, Ismael},
title = {Note on $\alpha $-filters in distributive nearlattices},
journal = {Mathematica Bohemica},
pages = {241--250},
year = {2019},
volume = {144},
number = {3},
doi = {10.21136/MB.2018.0101-17},
mrnumber = {3985855},
zbl = {07088849},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0101-17/}
}
TY - JOUR AU - Calomino, Ismael TI - Note on $\alpha $-filters in distributive nearlattices JO - Mathematica Bohemica PY - 2019 SP - 241 EP - 250 VL - 144 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0101-17/ DO - 10.21136/MB.2018.0101-17 LA - en ID - 10_21136_MB_2018_0101_17 ER -
Calomino, Ismael. Note on $\alpha $-filters in distributive nearlattices. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 241-250. doi: 10.21136/MB.2018.0101-17
[1] Abbott, J. C.: Semi-boolean algebra. Mat. Vesn., N. Ser. 4 (1967), 177-198. | MR | JFM
[2] Araújo, J., Kinyon, M.: Independent axiom systems for nearlattices. Czech. Math. J. 61 (2011), 975-992. | DOI | MR | JFM
[3] Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices. Miskolc Math. Notes 16 (2015), 65-78. | DOI | MR | JFM
[4] Celani, S.: $\alpha$-ideals and $\alpha$-deductive systems in bounded Hilbert algebras. J. Mult.-{}Valued Logic and Soft Computing 21 (2013), 493-510. | MR | JFM
[5] Celani, S.: Notes on bounded Hilbert algebras with supremum. Acta Sci. Math. 80 (2014), 3-19. | DOI | MR | JFM
[6] Celani, S., Calomino, I.: Stone style duality for distributive nearlattices. Algebra Univers. 71 (2014), 127-153. | DOI | MR | JFM
[7] Celani, S., Calomino, I.: On homomorphic images and the free distributive lattice extension of a distributive nearlattice. Rep. Math. Logic 51 (2016), 57-73. | DOI | MR | JFM
[8] Chajda, I., Halaš, R.: An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii, Ser. Math. 13 (2006), 29-31. | MR | JFM
[9] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). | MR | JFM
[10] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 46 (2007), 25-33. | MR | JFM
[11] Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308 (2008), 4906-4913. | DOI | MR | JFM
[12] Cornish, W. H.: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200-215. | DOI | MR | JFM
[13] Cornish, W. H.: Annulets and $\alpha$-ideals in distributive lattices. J. Aust. Math. Soc. 15 (1973), 70-77. | DOI | MR | JFM
[14] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hung. 32 (1978), 5-16. | DOI | MR | JFM
[15] González, L. J.: The logic of distributive nearlattices. Soft Computing 22 (2018), 2797-2807. | DOI
[16] Hickman, R.: Join algebras. Commun. Algebra 8 (1980), 1653-1685. | DOI | MR | JFM
Cité par Sources :