Note on $\alpha $-filters in distributive nearlattices
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 241-250
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this short paper we introduce the notion of $\alpha $-filter in the class of distributive nearlattices and we prove that the $\alpha $-filters of a normal distributive nearlattice are strongly connected with the filters of the distributive nearlattice of the annihilators.
In this short paper we introduce the notion of $\alpha $-filter in the class of distributive nearlattices and we prove that the $\alpha $-filters of a normal distributive nearlattice are strongly connected with the filters of the distributive nearlattice of the annihilators.
DOI : 10.21136/MB.2018.0101-17
Classification : 03G10, 06A12, 06D50
Keywords: distributive nearlattice; annihilator; $\alpha $-filter
@article{10_21136_MB_2018_0101_17,
     author = {Calomino, Ismael},
     title = {Note on $\alpha $-filters in distributive nearlattices},
     journal = {Mathematica Bohemica},
     pages = {241--250},
     year = {2019},
     volume = {144},
     number = {3},
     doi = {10.21136/MB.2018.0101-17},
     mrnumber = {3985855},
     zbl = {07088849},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0101-17/}
}
TY  - JOUR
AU  - Calomino, Ismael
TI  - Note on $\alpha $-filters in distributive nearlattices
JO  - Mathematica Bohemica
PY  - 2019
SP  - 241
EP  - 250
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0101-17/
DO  - 10.21136/MB.2018.0101-17
LA  - en
ID  - 10_21136_MB_2018_0101_17
ER  - 
%0 Journal Article
%A Calomino, Ismael
%T Note on $\alpha $-filters in distributive nearlattices
%J Mathematica Bohemica
%D 2019
%P 241-250
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0101-17/
%R 10.21136/MB.2018.0101-17
%G en
%F 10_21136_MB_2018_0101_17
Calomino, Ismael. Note on $\alpha $-filters in distributive nearlattices. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 241-250. doi: 10.21136/MB.2018.0101-17

[1] Abbott, J. C.: Semi-boolean algebra. Mat. Vesn., N. Ser. 4 (1967), 177-198. | MR | JFM

[2] Araújo, J., Kinyon, M.: Independent axiom systems for nearlattices. Czech. Math. J. 61 (2011), 975-992. | DOI | MR | JFM

[3] Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices. Miskolc Math. Notes 16 (2015), 65-78. | DOI | MR | JFM

[4] Celani, S.: $\alpha$-ideals and $\alpha$-deductive systems in bounded Hilbert algebras. J. Mult.-{}Valued Logic and Soft Computing 21 (2013), 493-510. | MR | JFM

[5] Celani, S.: Notes on bounded Hilbert algebras with supremum. Acta Sci. Math. 80 (2014), 3-19. | DOI | MR | JFM

[6] Celani, S., Calomino, I.: Stone style duality for distributive nearlattices. Algebra Univers. 71 (2014), 127-153. | DOI | MR | JFM

[7] Celani, S., Calomino, I.: On homomorphic images and the free distributive lattice extension of a distributive nearlattice. Rep. Math. Logic 51 (2016), 57-73. | DOI | MR | JFM

[8] Chajda, I., Halaš, R.: An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii, Ser. Math. 13 (2006), 29-31. | MR | JFM

[9] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). | MR | JFM

[10] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 46 (2007), 25-33. | MR | JFM

[11] Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308 (2008), 4906-4913. | DOI | MR | JFM

[12] Cornish, W. H.: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200-215. | DOI | MR | JFM

[13] Cornish, W. H.: Annulets and $\alpha$-ideals in distributive lattices. J. Aust. Math. Soc. 15 (1973), 70-77. | DOI | MR | JFM

[14] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hung. 32 (1978), 5-16. | DOI | MR | JFM

[15] González, L. J.: The logic of distributive nearlattices. Soft Computing 22 (2018), 2797-2807. | DOI

[16] Hickman, R.: Join algebras. Commun. Algebra 8 (1980), 1653-1685. | DOI | MR | JFM

Cité par Sources :