Keywords: strong McShane integral; McShane variational measure; Banach space, $m$-dimensional Euclidean space; compact non-degenerate $m$-dimensional interval
@article{10_21136_MB_2018_0100_17,
author = {Kaliaj, Sokol Bush},
title = {Some remarks on descriptive characterizations of the strong {McShane} integral},
journal = {Mathematica Bohemica},
pages = {339--355},
year = {2019},
volume = {144},
number = {4},
doi = {10.21136/MB.2018.0100-17},
mrnumber = {4047341},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0100-17/}
}
TY - JOUR AU - Kaliaj, Sokol Bush TI - Some remarks on descriptive characterizations of the strong McShane integral JO - Mathematica Bohemica PY - 2019 SP - 339 EP - 355 VL - 144 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0100-17/ DO - 10.21136/MB.2018.0100-17 LA - en ID - 10_21136_MB_2018_0100_17 ER -
%0 Journal Article %A Kaliaj, Sokol Bush %T Some remarks on descriptive characterizations of the strong McShane integral %J Mathematica Bohemica %D 2019 %P 339-355 %V 144 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0100-17/ %R 10.21136/MB.2018.0100-17 %G en %F 10_21136_MB_2018_0100_17
Kaliaj, Sokol Bush. Some remarks on descriptive characterizations of the strong McShane integral. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 339-355. doi: 10.21136/MB.2018.0100-17
[1] Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293-308. | DOI | MR | JFM
[2] Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R.: Relations among gauge and Pettis integrals for $cwk(X)$-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. | DOI | MR | JFM
[3] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence (1977). | MR | JFM
[4] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb R^m$. Czech. Math. J. 51 (2001), 95-110. | DOI | MR | JFM
[5] Piazza, L. Di, Musiał, K.: A characterization of variationally McShane integrable Banach-space valued functions. Ill. J. Math. 45 (2001), 279-289. | DOI | MR | JFM
[6] Dunford, N., Schwartz, J. T.: Linear Operators I. General Theory. Pure and Applied Mathematics. Vol. 7. Interscience Publishers, New York (1958). | MR | JFM
[7] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). | MR | JFM
[8] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | JFM
[9] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. | DOI | MR | JFM
[10] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. | DOI | MR | JFM
[11] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM
[12] Kaliaj, S. B.: Descriptive characterizations of Pettis and strongly McShane integrals. Real Anal. Exch. 39 (2014), 227-238. | DOI | MR | JFM
[13] Lee, T.-Y.: Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305-312. | DOI | MR | JFM
[14] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). | DOI | MR | JFM
[15] Marraffa, V.: The variational McShane integral in locally convex spaces. Rocky Mt. J. Math. 39 (2009), 1993-2013. | DOI | MR | JFM
[16] McShane, E. J.: Unified Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (Harcourt Brace Jovanovich, Publishers) (1983). | MR | JFM
[17] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. | MR | JFM
[18] Musiał, K.: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. | MR | JFM
[19] Musiał, K.: Pettis integral. Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 531-586 E. Pap. | DOI | MR | JFM
[20] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). | DOI | MR | JFM
[21] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM
[22] Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 51 (1984), 224 pages. | DOI | MR | JFM
[23] Thomson, B. S.: Derivates of interval functions. Mem. Am. Math. Soc. 452 (1991), 96 pages. | DOI | MR | JFM
[24] Thomson, B. S.: Differentiation. Handbook of Measure Theory. Volume I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. | DOI | MR | JFM
[25] Wu, C., Yao, X.: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32-36. | MR | JFM
[26] Ye, G.: On Henstock-Kurzweil and McShane integrals of Banach space-valued functions. J. Math. Anal. Appl. 330 (2007), 753-765. | DOI | MR | JFM
Cité par Sources :