Some remarks on descriptive characterizations of the strong McShane integral
Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 339-355
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function $f\colon W \to X$ defined on a non-degenerate closed subinterval $W$ of $\mathbb {R}^{m}$ in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure $V_{\mathcal {M}} F$ generated by the primitive $F\colon \mathcal {I}_{W} \to X$ of $f$, where $\mathcal {I}_{W}$ is the family of all closed non-degenerate subintervals of $W$.
We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function $f\colon W \to X$ defined on a non-degenerate closed subinterval $W$ of $\mathbb {R}^{m}$ in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure $V_{\mathcal {M}} F$ generated by the primitive $F\colon \mathcal {I}_{W} \to X$ of $f$, where $\mathcal {I}_{W}$ is the family of all closed non-degenerate subintervals of $W$.
DOI : 10.21136/MB.2018.0100-17
Classification : 26A46, 28A35, 28B05, 46B25, 46G10
Keywords: strong McShane integral; McShane variational measure; Banach space, $m$-dimensional Euclidean space; compact non-degenerate $m$-dimensional interval
@article{10_21136_MB_2018_0100_17,
     author = {Kaliaj, Sokol Bush},
     title = {Some remarks on descriptive characterizations of the strong {McShane} integral},
     journal = {Mathematica Bohemica},
     pages = {339--355},
     year = {2019},
     volume = {144},
     number = {4},
     doi = {10.21136/MB.2018.0100-17},
     mrnumber = {4047341},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0100-17/}
}
TY  - JOUR
AU  - Kaliaj, Sokol Bush
TI  - Some remarks on descriptive characterizations of the strong McShane integral
JO  - Mathematica Bohemica
PY  - 2019
SP  - 339
EP  - 355
VL  - 144
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0100-17/
DO  - 10.21136/MB.2018.0100-17
LA  - en
ID  - 10_21136_MB_2018_0100_17
ER  - 
%0 Journal Article
%A Kaliaj, Sokol Bush
%T Some remarks on descriptive characterizations of the strong McShane integral
%J Mathematica Bohemica
%D 2019
%P 339-355
%V 144
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0100-17/
%R 10.21136/MB.2018.0100-17
%G en
%F 10_21136_MB_2018_0100_17
Kaliaj, Sokol Bush. Some remarks on descriptive characterizations of the strong McShane integral. Mathematica Bohemica, Tome 144 (2019) no. 4, pp. 339-355. doi: 10.21136/MB.2018.0100-17

[1] Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293-308. | DOI | MR | JFM

[2] Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R.: Relations among gauge and Pettis integrals for $cwk(X)$-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. | DOI | MR | JFM

[3] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence (1977). | MR | JFM

[4] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb R^m$. Czech. Math. J. 51 (2001), 95-110. | DOI | MR | JFM

[5] Piazza, L. Di, Musiał, K.: A characterization of variationally McShane integrable Banach-space valued functions. Ill. J. Math. 45 (2001), 279-289. | DOI | MR | JFM

[6] Dunford, N., Schwartz, J. T.: Linear Operators I. General Theory. Pure and Applied Mathematics. Vol. 7. Interscience Publishers, New York (1958). | MR | JFM

[7] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). | MR | JFM

[8] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | JFM

[9] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. | DOI | MR | JFM

[10] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. | DOI | MR | JFM

[11] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM

[12] Kaliaj, S. B.: Descriptive characterizations of Pettis and strongly McShane integrals. Real Anal. Exch. 39 (2014), 227-238. | DOI | MR | JFM

[13] Lee, T.-Y.: Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305-312. | DOI | MR | JFM

[14] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). | DOI | MR | JFM

[15] Marraffa, V.: The variational McShane integral in locally convex spaces. Rocky Mt. J. Math. 39 (2009), 1993-2013. | DOI | MR | JFM

[16] McShane, E. J.: Unified Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (Harcourt Brace Jovanovich, Publishers) (1983). | MR | JFM

[17] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. | MR | JFM

[18] Musiał, K.: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. | MR | JFM

[19] Musiał, K.: Pettis integral. Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 531-586 E. Pap. | DOI | MR | JFM

[20] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). | DOI | MR | JFM

[21] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM

[22] Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 51 (1984), 224 pages. | DOI | MR | JFM

[23] Thomson, B. S.: Derivates of interval functions. Mem. Am. Math. Soc. 452 (1991), 96 pages. | DOI | MR | JFM

[24] Thomson, B. S.: Differentiation. Handbook of Measure Theory. Volume I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. | DOI | MR | JFM

[25] Wu, C., Yao, X.: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32-36. | MR | JFM

[26] Ye, G.: On Henstock-Kurzweil and McShane integrals of Banach space-valued functions. J. Math. Anal. Appl. 330 (2007), 753-765. | DOI | MR | JFM

Cité par Sources :