Some approximate fixed point theorems without continuity of the operator using auxiliary functions
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 251-271
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses.
We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses.
DOI : 10.21136/MB.2018.0095-17
Classification : 47H10, 54H25
Keywords: $\varepsilon $-fixed point; $\alpha $-admissible mapping; partial generalized convex contraction of order $4$ and rank $4$; $\alpha $-complete metric space
@article{10_21136_MB_2018_0095_17,
     author = {Chandok, Sumit and Ansari, Arslan Hojjat and Narang, Tulsi Dass},
     title = {Some approximate fixed point theorems without continuity of the operator using auxiliary functions},
     journal = {Mathematica Bohemica},
     pages = {251--271},
     year = {2019},
     volume = {144},
     number = {3},
     doi = {10.21136/MB.2018.0095-17},
     mrnumber = {3985856},
     zbl = {07088850},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0095-17/}
}
TY  - JOUR
AU  - Chandok, Sumit
AU  - Ansari, Arslan Hojjat
AU  - Narang, Tulsi Dass
TI  - Some approximate fixed point theorems without continuity of the operator using auxiliary functions
JO  - Mathematica Bohemica
PY  - 2019
SP  - 251
EP  - 271
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0095-17/
DO  - 10.21136/MB.2018.0095-17
LA  - en
ID  - 10_21136_MB_2018_0095_17
ER  - 
%0 Journal Article
%A Chandok, Sumit
%A Ansari, Arslan Hojjat
%A Narang, Tulsi Dass
%T Some approximate fixed point theorems without continuity of the operator using auxiliary functions
%J Mathematica Bohemica
%D 2019
%P 251-271
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0095-17/
%R 10.21136/MB.2018.0095-17
%G en
%F 10_21136_MB_2018_0095_17
Chandok, Sumit; Ansari, Arslan Hojjat; Narang, Tulsi Dass. Some approximate fixed point theorems without continuity of the operator using auxiliary functions. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 251-271. doi: 10.21136/MB.2018.0095-17

[1] Ansari, A. H., Shukla, S.: Some fixed point theorems for ordered $F$-$({\cal F},h)$-contraction and subcontraction in 0-$f$-orbitally complete partial metric spaces. J. Adv. Math. Stud. 9 (2016), 37-53. | MR | JFM

[2] Berinde, M.: Approximate fixed point theorems. Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25. | MR | JFM

[3] Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72 (1966), 571-575. | DOI | MR | JFM

[4] Chandok, S., Ansari, A. H.: Some results on generalized nonlinear contractive mappings. Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages. | DOI

[5] Dey, D., Laha, A. K., Saha, M.: Approximate coincidence point of two nonlinear mappings. J. Math. 2013 (2013), Article No. 962058, 4 pages. | DOI | MR | JFM

[6] Dey, D., Saha, M.: Approximate fixed point of Reich operator. Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123. | MR | JFM

[7] Hussain, N., Kutbi, M. A., Salimi, P.: Fixed point theory in $\alpha$-complete metric spaces with applications. Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages. | DOI | MR

[8] Istrăţescu, V. I.: Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104. | DOI | MR | JFM

[9] Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć.: Some approximate fixed point results and application on graph theory for partial $(h,F)$-generalized convex contraction mappings with special class of functions on complete metric space. J. Nonlinear Sci. Appl. 10 (2017), 1695-1708. | DOI | MR

[10] Kohlenbach, U., Leuştean, L.: The approximate fixed point property in product spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 806-818. | DOI | MR | JFM

[11] Latif, A., Sintunavarat, W., Ninsri, A.: Approximate fixed point theorems for partial generalized convex contraction mappings in $\alpha$-complete metric spaces. Taiwanese J. Math. 19 (2015), 315-333. | DOI | MR | JFM

[12] Miandaragh, M. A., Postolache, M., Rezapour, S.: Approximate fixed points of generalized convex contractions. Fixed Point Theory Appl. 2013 (2013), Article No. 255, 8 pages. | DOI | MR | JFM

[13] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1978), 104-113. | DOI | MR | JFM

[14] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha$-$\psi$-contractive type mappings. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2154-2165. | DOI | MR | JFM

[15] Tijs, S., Torre, A., Brânzei, R.: Approximate fixed point theorems. Libertas Math. 23 (2003), 35-39 \99999MR99999 2002283 \vfill. | MR | JFM

Cité par Sources :