Keywords: $\varepsilon $-fixed point; $\alpha $-admissible mapping; partial generalized convex contraction of order $4$ and rank $4$; $\alpha $-complete metric space
@article{10_21136_MB_2018_0095_17,
author = {Chandok, Sumit and Ansari, Arslan Hojjat and Narang, Tulsi Dass},
title = {Some approximate fixed point theorems without continuity of the operator using auxiliary functions},
journal = {Mathematica Bohemica},
pages = {251--271},
year = {2019},
volume = {144},
number = {3},
doi = {10.21136/MB.2018.0095-17},
mrnumber = {3985856},
zbl = {07088850},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0095-17/}
}
TY - JOUR AU - Chandok, Sumit AU - Ansari, Arslan Hojjat AU - Narang, Tulsi Dass TI - Some approximate fixed point theorems without continuity of the operator using auxiliary functions JO - Mathematica Bohemica PY - 2019 SP - 251 EP - 271 VL - 144 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0095-17/ DO - 10.21136/MB.2018.0095-17 LA - en ID - 10_21136_MB_2018_0095_17 ER -
%0 Journal Article %A Chandok, Sumit %A Ansari, Arslan Hojjat %A Narang, Tulsi Dass %T Some approximate fixed point theorems without continuity of the operator using auxiliary functions %J Mathematica Bohemica %D 2019 %P 251-271 %V 144 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0095-17/ %R 10.21136/MB.2018.0095-17 %G en %F 10_21136_MB_2018_0095_17
Chandok, Sumit; Ansari, Arslan Hojjat; Narang, Tulsi Dass. Some approximate fixed point theorems without continuity of the operator using auxiliary functions. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 251-271. doi: 10.21136/MB.2018.0095-17
[1] Ansari, A. H., Shukla, S.: Some fixed point theorems for ordered $F$-$({\cal F},h)$-contraction and subcontraction in 0-$f$-orbitally complete partial metric spaces. J. Adv. Math. Stud. 9 (2016), 37-53. | MR | JFM
[2] Berinde, M.: Approximate fixed point theorems. Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25. | MR | JFM
[3] Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72 (1966), 571-575. | DOI | MR | JFM
[4] Chandok, S., Ansari, A. H.: Some results on generalized nonlinear contractive mappings. Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages. | DOI
[5] Dey, D., Laha, A. K., Saha, M.: Approximate coincidence point of two nonlinear mappings. J. Math. 2013 (2013), Article No. 962058, 4 pages. | DOI | MR | JFM
[6] Dey, D., Saha, M.: Approximate fixed point of Reich operator. Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123. | MR | JFM
[7] Hussain, N., Kutbi, M. A., Salimi, P.: Fixed point theory in $\alpha$-complete metric spaces with applications. Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages. | DOI | MR
[8] Istrăţescu, V. I.: Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104. | DOI | MR | JFM
[9] Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć.: Some approximate fixed point results and application on graph theory for partial $(h,F)$-generalized convex contraction mappings with special class of functions on complete metric space. J. Nonlinear Sci. Appl. 10 (2017), 1695-1708. | DOI | MR
[10] Kohlenbach, U., Leuştean, L.: The approximate fixed point property in product spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 806-818. | DOI | MR | JFM
[11] Latif, A., Sintunavarat, W., Ninsri, A.: Approximate fixed point theorems for partial generalized convex contraction mappings in $\alpha$-complete metric spaces. Taiwanese J. Math. 19 (2015), 315-333. | DOI | MR | JFM
[12] Miandaragh, M. A., Postolache, M., Rezapour, S.: Approximate fixed points of generalized convex contractions. Fixed Point Theory Appl. 2013 (2013), Article No. 255, 8 pages. | DOI | MR | JFM
[13] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1978), 104-113. | DOI | MR | JFM
[14] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha$-$\psi$-contractive type mappings. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2154-2165. | DOI | MR | JFM
[15] Tijs, S., Torre, A., Brânzei, R.: Approximate fixed point theorems. Libertas Math. 23 (2003), 35-39 \99999MR99999 2002283 \vfill. | MR | JFM
Cité par Sources :