Existence of solutions for some quasilinear $\vec {p}(x)$-elliptic problem with Hardy potential
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 299-324
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the anisotropic quasilinear elliptic Dirichlet problem $$ \begin {cases} \displaystyle -\sum _{i=1}^{N} D^{i} a_{i}(x,u,\nabla u) + |u|^{s(x)-1}u= f +\lambda \frac {|u|^{p_{0}(x)-2}u}{|x|^{p_{0}(x)}}\text {in}\ \Omega ,\\ u = 0 \text {on}\ \partial \Omega , \end {cases} $$ where $\Omega $ is an open bounded subset of $\Bbb R^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^{1}(\Omega )$ and $\lambda $ is a positive constant.
We consider the anisotropic quasilinear elliptic Dirichlet problem $$ \begin {cases} \displaystyle -\sum _{i=1}^{N} D^{i} a_{i}(x,u,\nabla u) + |u|^{s(x)-1}u= f +\lambda \frac {|u|^{p_{0}(x)-2}u}{|x|^{p_{0}(x)}}\text {in}\ \Omega ,\\ u = 0 \text {on}\ \partial \Omega , \end {cases} $$ where $\Omega $ is an open bounded subset of $\Bbb R^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^{1}(\Omega )$ and $\lambda $ is a positive constant.
DOI : 10.21136/MB.2018.0093-17
Classification : 35J15, 35J62
Keywords: anisotropic variable exponent Sobolev space; quasilinear elliptic equation; Hardy potential; entropy solution; $L^{1}$-data
@article{10_21136_MB_2018_0093_17,
     author = {Azroul, Elhoussine and Bouziani, Mohammed and Hjiaj, Hassane and Youssfi, Ahmed},
     title = {Existence of solutions for some quasilinear $\vec {p}(x)$-elliptic problem with {Hardy} potential},
     journal = {Mathematica Bohemica},
     pages = {299--324},
     year = {2019},
     volume = {144},
     number = {3},
     doi = {10.21136/MB.2018.0093-17},
     mrnumber = {3985859},
     zbl = {07088853},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0093-17/}
}
TY  - JOUR
AU  - Azroul, Elhoussine
AU  - Bouziani, Mohammed
AU  - Hjiaj, Hassane
AU  - Youssfi, Ahmed
TI  - Existence of solutions for some quasilinear $\vec {p}(x)$-elliptic problem with Hardy potential
JO  - Mathematica Bohemica
PY  - 2019
SP  - 299
EP  - 324
VL  - 144
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0093-17/
DO  - 10.21136/MB.2018.0093-17
LA  - en
ID  - 10_21136_MB_2018_0093_17
ER  - 
%0 Journal Article
%A Azroul, Elhoussine
%A Bouziani, Mohammed
%A Hjiaj, Hassane
%A Youssfi, Ahmed
%T Existence of solutions for some quasilinear $\vec {p}(x)$-elliptic problem with Hardy potential
%J Mathematica Bohemica
%D 2019
%P 299-324
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0093-17/
%R 10.21136/MB.2018.0093-17
%G en
%F 10_21136_MB_2018_0093_17
Azroul, Elhoussine; Bouziani, Mohammed; Hjiaj, Hassane; Youssfi, Ahmed. Existence of solutions for some quasilinear $\vec {p}(x)$-elliptic problem with Hardy potential. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 299-324. doi: 10.21136/MB.2018.0093-17

[1] Abdellaoui, B., Peral, I., Primo, A.: Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results. J. Differ. Equations 239 (2007), 386-416. | DOI | MR | JFM

[2] Alberico, A., Blasio, G. Di, Feo, F.: A priori estimates for solutions to anisotropic elliptic problems via symmetrization. Math. Nachr. 290 (2017), 986-1003. | DOI | MR | JFM

[3] Antontsev, S. N., Chipot, M.: Anisotropic equations: uniqueness and existence results. Differ. Integral Equ. 21 (2008), 401-419. | MR | JFM

[4] Antontsev, S. N., Rodrigues, J. F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. | DOI | MR | JFM

[5] Barletta, G., Cianchi, A.: Dirichlet problems for fully anisotropic elliptic equations. Proc. R. Soc. Edinb., Sect. A, Math. 147 (2017), 25-60. | DOI | MR | JFM

[6] Benboubker, M. B., Azroul, E., Barbara, A.: Quasilinear elliptic problems with nonstandard growth. Electron. J. Differ. Equ. 2011 (2011), Paper No. 62, 16 pages. | MR | JFM

[7] Benboubker, M. B., Hjiaj, H., Ouaro, S.: Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent. J. Appl. Anal. Comput. 4 (2014), 245-270. | MR | JFM

[8] Bendahmane, M., Chrif, M., Manouni, S. El: An approximation result in generalized anisotropic Sobolev spaces and applications. Z. Anal. Anwend. 30 (2011), 341-353. | DOI | MR | JFM

[9] Bendahmane, M., Karlsen, K. H., Saad, M.: Nonlinear anisotropic elliptic and parabolic equations with variable exponents and {$L^1$} data. Commun. Pure Appl. Anal. 12 (2013), 1201-1220. | DOI | MR | JFM

[10] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. | MR | JFM

[11] Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in $L^1$. Differ. Integral Equ. 9 (1996), 209-212. | MR | JFM

[12] Cianchi, A.: Symmetrization in anisotropic elliptic problems. Commun. Partial Differ. Equations 32 (2007), 693-717. | DOI | MR | JFM

[13] Cî{r}stea, F. C., Vétois, J.: Fundamental solutions for anisotropic elliptic equations: existence and a priori estimates. Commun. Partial Differ. Equations 40 (2015), 727-765. | DOI | MR | JFM

[14] Nardo, R. Di, Feo, F.: Existence and uniqueness for nonlinear anisotropic elliptic equations. Arch. Math. 102 (2014), 141-153. | DOI | MR | JFM

[15] Nardo, R. Di, Feo, F., Guibé, O.: Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differ. Equ. 18 (2013), 433-458. | MR | JFM

[16] Diening, L., Harjulehto, P., Hästö, P., Růžička, R. M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[17] DiPerna, R. J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. (2) 130 (1989), 321-366. | DOI | MR | JFM

[18] DiPerna, R. J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511-547. | DOI | MR | JFM

[19] Guibé, O.: Uniqueness of the renormalized solution to a class of nonlinear elliptic equations. On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments Quad. Mat. 23. Dipartimento di Matematica, Seconda Università di Napoli, Caserta; Aracne, Rome. (2008), 256-282 A. Alvino et al. | MR | JFM

[20] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data. Trans. Am. Math. Soc. 360 (2008), 643-669. | DOI | MR | JFM

[21] Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space. J. Differ. Equations 264 (2018), 341-377. | DOI | MR | JFM

[22] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. | MR | JFM

[23] Liu, Y., Davidson, R., Taylor, P.: Investigation of the touch sensitivity of ER fluid based tactile display. Smart Structures and Materials: Smart Structures and Integrated Systems. Proceeding of SPIE 5764 (2005), 92-99. | DOI

[24] Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340 (2008), 687-698. | DOI | MR | JFM

[25] Mokhtari, F.: Regularity of the solution to nonlinear anisotropic elliptic equations with variable exponents and irregular data. Mediterr. J. Math. 14 (2017), Article No. 141, 18 pages. | DOI | MR | JFM

[26] Porzio, M. M.: On some quasilinear elliptic equations involving Hardy potential. Rend. Mat. Appl., VII. Ser. 27 (2007), 277-297. | MR | JFM

[27] Vétois, J.: Existence and regularity for critical anisotropic equations with critical directions. Adv. Differ. Equ. 16 (2011), 61-83. | MR | JFM

[28] Vétois, J.: Strong maximum principles for anisotropic elliptic and parabolic equations. Adv. Nonlinear Stud. 12 (2012), 101-114. | DOI | MR | JFM

[29] Wittbold, P., Zimmermann, A.: Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and {$L^1$}-data. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2990-3008. | DOI | MR | JFM

[30] Youssfi, A., Azroul, E., Hjiaj, H.: On nonlinear elliptic equations with Hardy potential and {$L^1$}-data. Monatsh. Math. 173 (2014), 107-129. | DOI | MR | JFM

Cité par Sources :