Polynomials, sign patterns and Descartes' rule of signs
Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 39-67
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By Descartes' rule of signs, a real degree $d$ polynomial $P$ with all nonvanishing coefficients with $c$ sign changes and $p$ sign preservations in the sequence of its coefficients ($c+p=d$) has ${\rm pos}\leq c$ positive and $\neg \leq p$ negative roots, where ${\rm pos}\equiv c\pmod 2$ and $\neg \equiv p\pmod 2$. For $1\leq d\leq 3$, for every possible choice of the sequence of signs of coefficients of $P$ (called sign pattern) and for every pair $({\rm pos}, {\rm neg})$ satisfying these conditions there exists a polynomial $P$ with exactly ${\rm pos}$ positive and exactly $\neg $ negative roots (all of them simple). For $d\geq 4$ this is not so. It was observed that for $4\leq d\leq 8$, in all nonrealizable cases either ${\rm pos}=0$ or ${\rm neg}=0$. It was conjectured that this is the case for any $d\geq 4$. We show a counterexample to this conjecture for $d=11$. Namely, we prove that for the sign pattern $(+,-,-,-,-,-,+,+,+,+,+,-)$ and the pair $(1,8)$ there exists no polynomial with $1$ positive, $8$ negative simple roots and a complex conjugate pair.
By Descartes' rule of signs, a real degree $d$ polynomial $P$ with all nonvanishing coefficients with $c$ sign changes and $p$ sign preservations in the sequence of its coefficients ($c+p=d$) has ${\rm pos}\leq c$ positive and $\neg \leq p$ negative roots, where ${\rm pos}\equiv c\pmod 2$ and $\neg \equiv p\pmod 2$. For $1\leq d\leq 3$, for every possible choice of the sequence of signs of coefficients of $P$ (called sign pattern) and for every pair $({\rm pos}, {\rm neg})$ satisfying these conditions there exists a polynomial $P$ with exactly ${\rm pos}$ positive and exactly $\neg $ negative roots (all of them simple). For $d\geq 4$ this is not so. It was observed that for $4\leq d\leq 8$, in all nonrealizable cases either ${\rm pos}=0$ or ${\rm neg}=0$. It was conjectured that this is the case for any $d\geq 4$. We show a counterexample to this conjecture for $d=11$. Namely, we prove that for the sign pattern $(+,-,-,-,-,-,+,+,+,+,+,-)$ and the pair $(1,8)$ there exists no polynomial with $1$ positive, $8$ negative simple roots and a complex conjugate pair.
DOI : 10.21136/MB.2018.0091-17
Classification : 26C10, 30C15
Keywords: real polynomial in one variable; sign pattern; Descartes' rule of signs
@article{10_21136_MB_2018_0091_17,
     author = {Kostov, Vladimir Petrov},
     title = {Polynomials, sign patterns and {Descartes'} rule of signs},
     journal = {Mathematica Bohemica},
     pages = {39--67},
     year = {2019},
     volume = {144},
     number = {1},
     doi = {10.21136/MB.2018.0091-17},
     mrnumber = {3934197},
     zbl = {07088835},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0091-17/}
}
TY  - JOUR
AU  - Kostov, Vladimir Petrov
TI  - Polynomials, sign patterns and Descartes' rule of signs
JO  - Mathematica Bohemica
PY  - 2019
SP  - 39
EP  - 67
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0091-17/
DO  - 10.21136/MB.2018.0091-17
LA  - en
ID  - 10_21136_MB_2018_0091_17
ER  - 
%0 Journal Article
%A Kostov, Vladimir Petrov
%T Polynomials, sign patterns and Descartes' rule of signs
%J Mathematica Bohemica
%D 2019
%P 39-67
%V 144
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0091-17/
%R 10.21136/MB.2018.0091-17
%G en
%F 10_21136_MB_2018_0091_17
Kostov, Vladimir Petrov. Polynomials, sign patterns and Descartes' rule of signs. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 39-67. doi: 10.21136/MB.2018.0091-17

[1] Albouy, A., Fu, Y.: Some remarks about Descartes' rule of signs. Elem. Math. 69 (2014), 186-194. | DOI | MR | JFM

[2] Cajori, F.: A history of the arithmetical methods of approximation to the roots of numerical equations of one unknown quantity. Colorado College Publication, Science Series 12 (1910), 171-215, 217-287 \99999JFM99999 42.0057.02.

[3] Forsgård, J., Kostov, V. P., Shapiro, B. Z.: Could René Descartes have known this?. Exp. Math. 24 (2015), 438-448. | DOI | MR | JFM

[4] Forsgård, J., Kostov, V. P., Shapiro, B. Z.: Corrigendum:"Could René Descartes have known this?". (to appear) in Exp. Math. | DOI | MR

[5] Fourier, J.: Sur l'usage du théorème de Descartes dans la recherche des limites des racines. Bulletin des sciences par la Société Philomatique de Paris (1820), 156-165, 181-187 Oeuvres de Fourier publiées par les soins de M. Gaston Darboux sous les auspices du ministère de l'instruction publique. Tome II. Mémoires publiés dans divers recueils Gauthier-Villars, Paris 1890 291-309\kern0pt French \99999JFM99999 22.0021.01.

[6] Gauss, C. F.: Beweis eines algebraischen Lehrsatzes. J. Reine Angew. Math. 3 (1828), 1-4 German. | DOI | MR | JFM

[7] Grabiner, D. J.: Descartes' rule of signs: Another construction. Am. Math. Mon. 106 (1999), 854-856. | DOI | MR | JFM

[8] Kostov, V. P.: On realizability of sign patterns by real polynomials. (to appear) in Czech. Math. J. | DOI | MR

[9] Kostov, V. P., Shapiro, B.: Something you always wanted to know about real polynomials (but were afraid to ask). Avaible at | arXiv

Cité par Sources :