Keywords: iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency
@article{10_21136_MB_2018_0085_17,
author = {Ert\"urk, M\"uzeyyen and G\"ursoy, Faik},
title = {Some convergence, stability and data dependency results for a {Picard-S} iteration method of quasi-strictly contractive operators},
journal = {Mathematica Bohemica},
pages = {69--83},
year = {2019},
volume = {144},
number = {1},
doi = {10.21136/MB.2018.0085-17},
mrnumber = {3934198},
zbl = {07088836},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0085-17/}
}
TY - JOUR AU - Ertürk, Müzeyyen AU - Gürsoy, Faik TI - Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators JO - Mathematica Bohemica PY - 2019 SP - 69 EP - 83 VL - 144 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0085-17/ DO - 10.21136/MB.2018.0085-17 LA - en ID - 10_21136_MB_2018_0085_17 ER -
%0 Journal Article %A Ertürk, Müzeyyen %A Gürsoy, Faik %T Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators %J Mathematica Bohemica %D 2019 %P 69-83 %V 144 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0085-17/ %R 10.21136/MB.2018.0085-17 %G en %F 10_21136_MB_2018_0085_17
Ertürk, Müzeyyen; Gürsoy, Faik. Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 69-83. doi: 10.21136/MB.2018.0085-17
[1] Akewe, H., Okeke, G. A.: Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators. Fixed Point Theory Appl. 2015 (2015), Paper No. 66, 8 pages. | DOI | MR | JFM
[2] Berinde, V.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2004 (2004), 97-105. | DOI | MR | JFM
[3] Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics 1912. Springer, Berlin (2007). | DOI | MR | JFM
[4] Berinde, V.: On a notion of rapidity of convergence used in the study of fixed point iterative methods. Creat. Math. Inform. 25 (2016), 29-40. | MR | JFM
[5] Berinde, V., Păcurar, M.: A fixed point proof of the convergence of a Newton-type method. Fixed Point Theory 7 (2006), 235-244. | MR | JFM
[6] Bosede, A. O., Rhoades, B. E.: Stability of Picard and Mann iteration for a general class of functions. J. Adv. Math. Stud. 3 (2010), 23-25. | MR | JFM
[7] Chidume, C. E., Olaleru, J. O.: Picard iteration process for a general class of contractive mappings. J. Niger. Math. Soc. 33 (2014), 19-23. | MR | JFM
[8] Fukhar-ud-din, H., Berinde, V.: Iterative methods for the class of quasi-contractive type operators and comparison of their rate of convergence in convex metric spaces. Filomat 30 (2016), 223-230. | DOI | MR | JFM
[9] Gürsoy, F.: A Picard-S iterative method for approximating fixed point of weak-contraction mappings. Filomat 30 (2016), 2829-2845. | DOI | MR | JFM
[10] Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. Avaible at , 16 pages. | arXiv
[11] Gürsoy, F., Karakaya, V., Rhoades, B. E.: Data dependence results of new multi-step and S-iterative schemes for contractive-like operators. Fixed Point Theory Appl. 2013 (2013), Paper No. 76, 12 pages. | DOI | MR | JFM
[12] Gürsoy, F., Khan, A. R., Fukhar-ud-din, H.: Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacet. J. Math. Stat. 46 (2017), 373-388. | DOI | MR | JFM
[13] Haghi, R. H., Postolache, M., Rezapour, S.: On T-stability of the Picard iteration for generalized $\phi$-contraction mappings. Abstr. Appl. Anal. 2012 (2012), Article ID 658971, 7 pages. | DOI | MR | JFM
[14] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures. Math. Jap. 33 (1988), 693-706. | MR | JFM
[15] Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44 (1974), 147-150. | DOI | MR | JFM
[16] Karakaya, V., Doğan, K., Gürsoy, F., Ertürk, M.: Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 560258, 9 pages. | DOI | MR | JFM
[17] Karakaya, V., Gürsoy, F., Ertürk, M.: Some convergence and data dependence results for various fixed point iterative methods. Kuwait J. Sci. 43 (2016), 112-128. | MR
[18] Khan, S. H.: A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. 2013 (2013), Paper No. 69, 10 pages. | DOI | MR | JFM
[19] Khan, A. R., Gürsoy, F., Karakaya, V.: Jungck-Khan iterative scheme and higher convergence rate. Int. J. Comput. Math. 93 (2016), 2092-2105. | DOI | MR | JFM
[20] Khan, A. R., Gürsoy, F., Kumar, V.: Stability and data dependence results for the Jungck-Khan iterative scheme. Turkish J. Math. 40 (2016), 631-640. | DOI | MR
[21] Khan, A. R., Kumar, V., Hussain, N.: Analytical and numerical treatment of Jungck-type iterative schemes. Appl. Math. Comput. 231 (2014), 521-535. | DOI | MR
[22] Mann, W. R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4 (1953), 506-510. | DOI | MR | JFM
[23] Okeke, G. A., Kim, J. K.: Convergence and summable almost $T$-stability of the random Picard-Mann hybrid iterative process. J. Inequal. Appl. 2015 (2015), Paper No. 290, 14 pages. | DOI | MR | JFM
[24] Olatinwo, M. O., Postolache, M.: Stability results for Jungck-type iterative processes in convex metric spaces. Appl. Math. Comput. 218 (2012), 6727-6732. | DOI | MR | JFM
[25] Phuengrattana, W., Suantai, S.: Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces. Thai J. Math. 11 (2013), 217-226. | MR | JFM
[26] Picard, E.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. Journ. de Math. (4) 6 (1890), 145-210 French \99999JFM99999 22.0357.02.
[27] Sahu, D. R.: Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12 (2011), 187-204. | MR | JFM
[28] Scherzer, O.: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl. 194 (1995), 911-933. | DOI | MR | JFM
[29] Şoltuz, Ş. M., Grosan, T.: Data dependence for Ishikawa iteration when dealing with contractive-like operators. Fixed Point Theory Appl. 2008 (2008), Article ID 242916, 7 pages. | DOI | MR | JFM
[30] Xu, B., Noor, M. A.: Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 267 (2002), 444-453. | DOI | MR | JFM
[31] Yildirim, I., Abbas, M., Karaca, N.: On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators. J. Nonlinear Sci. Appl. 9 (2016), 3773-3786. | DOI | MR | JFM
Cité par Sources :