Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators
Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 69-83
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.
DOI :
10.21136/MB.2018.0085-17
Classification :
47H09, 47H10, 54H25
Keywords: iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency
Keywords: iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency
@article{10_21136_MB_2018_0085_17,
author = {Ert\"urk, M\"uzeyyen and G\"ursoy, Faik},
title = {Some convergence, stability and data dependency results for a {Picard-S} iteration method of quasi-strictly contractive operators},
journal = {Mathematica Bohemica},
pages = {69--83},
publisher = {mathdoc},
volume = {144},
number = {1},
year = {2019},
doi = {10.21136/MB.2018.0085-17},
mrnumber = {3934198},
zbl = {07088836},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0085-17/}
}
TY - JOUR AU - Ertürk, Müzeyyen AU - Gürsoy, Faik TI - Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators JO - Mathematica Bohemica PY - 2019 SP - 69 EP - 83 VL - 144 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0085-17/ DO - 10.21136/MB.2018.0085-17 LA - en ID - 10_21136_MB_2018_0085_17 ER -
%0 Journal Article %A Ertürk, Müzeyyen %A Gürsoy, Faik %T Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators %J Mathematica Bohemica %D 2019 %P 69-83 %V 144 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0085-17/ %R 10.21136/MB.2018.0085-17 %G en %F 10_21136_MB_2018_0085_17
Ertürk, Müzeyyen; Gürsoy, Faik. Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 69-83. doi: 10.21136/MB.2018.0085-17
Cité par Sources :