Keywords: bornology; inductive limit; Fréchet space; functional calculus
@article{10_21136_MB_2018_0063_17,
author = {Hemdaoui, Mohammed},
title = {A useful algebra for functional calculus},
journal = {Mathematica Bohemica},
pages = {99--112},
year = {2019},
volume = {144},
number = {1},
doi = {10.21136/MB.2018.0063-17},
mrnumber = {3934200},
zbl = {07088838},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0063-17/}
}
Hemdaoui, Mohammed. A useful algebra for functional calculus. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 99-112. doi: 10.21136/MB.2018.0063-17
[1] Bourbaki, N.: Éléments de Mathématique. Fasc. XXVII: Algèbre Commutative. Hermann, Paris (1961), French. | MR | JFM
[2] Bourbaki, N.: Éléments de Mathématique. Fasc. XXXII: Théories spectrales. Hermann, Paris (1967), French. | MR | JFM
[3] Buchwalter, H.: Espaces vectoriels bornologiques. Publ. Dép. Math., Lyon 2 (1965), 2-53 French. | MR | JFM
[4] Ferrier, J. P.: Séminaire sur les Algèbres complètes. Lectures Notes in Mathematics 164. Berlin, Springer (1970), French. | DOI | MR | JFM
[5] Hemdaoui, M.: Approximations analytique sur les compacts de $\mathbb{C}^n$. Thèse $3^{ {ème}}$ cycle. Année universitaire (Février) 1982. Université des Sciences et Technologies. Lille 1, France French Avaible at https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/1b9d01d3-5d59-496d-877d-9ca2a836b129\kern0pt
[6] Hemdaoui, M.: Calcul symbolique et l'opérateur de Laplace. Thèse Année Académique 1986-1987: ULB. Bruxelles, Belgique French Avaible at https://dipot.ulb.ac.be/dspace/bitstream/2013/213480/1/680effa8-3d2a-4225-bcb6-c0c6e156cac8.txt\kern0pt
[7] Hemdaoui, M.: An application of Mittag-Leffler lemma to the L.F algebra of $\mathcal{C}^{(\infty)}$ $\mathbb{N}$-tempered functions on $\mathbb{R}^+$. Sarajevo J. Math. 13 (2017), 61-70. | DOI | MR
[8] Hogbe-Nlend, H.: Complétion, tenseurs et nucléarité en bornologie. J. Math. Pures Appl., IX. Sér. 49 (1970), 193-288 French. | MR | JFM
[9] Hogbe-Nlend, H.: Theory of Bornologies and Application. Lecture Notes 213. Springer, Berlin (1971), French. | DOI | MR | JFM
[10] Hogbe-Nlend, H.: Bornologies and Functional Analysis. Introductory Course on the Theory of Duality Topology-Bornology and Its Use in Functional Analysis. North-Holland Mathematics Studies 26; Notas de Matematica 62. North Holland Publishing Company, Amsterdam (1977). | DOI | MR | JFM
[11] Hoc, Nguyen The: Croissance des coefficients spectraux et calcul fonctionnel. Thèse Année Académique 1975-1976. ULB. Bruxelles, Belgique French Avaible at https://dipot.ulb.ac.be/dspace/bitstream/2013/214383/1/62487895-bcef-4c2e-b604-8eab9d4023a7.txt\kern0pt
[12] Horvarth, J.: Topological Vector Spaces and Distributions. Vol. 1. Addison-Wesley Series in Mathematics. Addison-Wesley, Ontario (1966). | MR | JFM
[13] Vasilescu, F. H.: Analytic Functional Calculus and Spectral Decompositions. Mathematics and Its Applications 1 (East European Series). D. Reidel Publishing compagny, Dordrecht (1982). | MR | JFM
[14] Waelbroeck, L.: Le calcul symbolique dans les algèbres commutatives. C. R. Acad. Sci., Paris 238 (1954), 556-558 French. | MR | JFM
[15] Waelbroeck, L.: Études spectrales des algèbres complètes. Mém. Cl. Sci., Collect. Octavo, Acad. R. Belg. 31 (1960), 142 pages French. | MR | JFM
[16] Waelbroeck, L.: Calcul symbolique lié à la croissance de la résolvante. Rend. Sem. Mat. Fis. Milano 34 (1964), 51-72 French. | DOI | MR | JFM
[17] Waelbroeck, L.: The holomorphic functional calculus and non-Banach algebras. Algebras in Analysis. Proc. Instr. Conf. and NATO Advanced Study Inst., Birmingham 1973 Academic Press, London 187-251 (1975). | MR | JFM
[18] Wrobel, W.: Extension du calcul fonctionnel holomorphe et applications à l'approximation. C. R. Acad. Sci. Paris, Sér. A 275 (1972), 175-177 French. | MR | JFM
Cité par Sources :