On a divisibility problem
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 125-135
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \geq 5 $, then $$ (p_{k+1}-1)! \mid (\tfrac {1}{2} (p_{k +1} - 1))! p_ {k}!, $$ which improves a previous result of the second author.
Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \geq 5 $, then $$ (p_{k+1}-1)! \mid (\tfrac {1}{2} (p_{k +1} - 1))! p_ {k}!, $$ which improves a previous result of the second author.
DOI : 10.21136/MB.2018.0058-17
Classification : 11A25, 11B83
Keywords: prime; divisibility; exponent; Sándor-Luca's theorem
@article{10_21136_MB_2018_0058_17,
     author = {Yang, Shichun and Luca, Florian and Togb\'e, Alain},
     title = {On a divisibility problem},
     journal = {Mathematica Bohemica},
     pages = {125--135},
     year = {2019},
     volume = {144},
     number = {2},
     doi = {10.21136/MB.2018.0058-17},
     mrnumber = {3974182},
     zbl = {07088840},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/}
}
TY  - JOUR
AU  - Yang, Shichun
AU  - Luca, Florian
AU  - Togbé, Alain
TI  - On a divisibility problem
JO  - Mathematica Bohemica
PY  - 2019
SP  - 125
EP  - 135
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/
DO  - 10.21136/MB.2018.0058-17
LA  - en
ID  - 10_21136_MB_2018_0058_17
ER  - 
%0 Journal Article
%A Yang, Shichun
%A Luca, Florian
%A Togbé, Alain
%T On a divisibility problem
%J Mathematica Bohemica
%D 2019
%P 125-135
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/
%R 10.21136/MB.2018.0058-17
%G en
%F 10_21136_MB_2018_0058_17
Yang, Shichun; Luca, Florian; Togbé, Alain. On a divisibility problem. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 125-135. doi: 10.21136/MB.2018.0058-17

[1] Atanassov, K. T.: Remark on József Sándor and Florian Luca's theorem. C. R. Acad. Bulg. Sci. 55 (2002), 9-14. | MR | JFM

[2] Berend, D.: On the parity of exponents in the factorization of $n!$. J. Number Theory 64 (1997), 13-19 \99999DOI99999 10.1006/jnth.1997.2106 \goodbreak. | DOI | MR | JFM

[3] Chen, Y. G., Zhu, Y. C.: On the prime power factorization of $n!$. J. Number Theory 82 (2000), 1-11. | DOI | MR | JFM

[4] Dusart, P.: Explicit inequalities for $\psi(X)$, $\theta(X)$, $\pi(X)$ and prime numbers. C. R. Math. Acad. Sci., Soc. R. Can. 21 (1999), 53-59 French. | MR | JFM

[5] Dusart, P.: The $k$-th prime is greater than $k(\log k +\log \log k - 1)$ for $k\geq 2$. Math. Comput. 68 (1999), 411-415. | DOI | MR | JFM

[6] Erdős, P.: Note on products of consecutive integers. J. Lond. Math. Soc. 14 (1939), 194-198. | DOI | MR | JFM

[7] Erdős, P.: On a conjecture of Klee. Am. Math. Monthly 58 (1951), 98-101. | DOI | MR | JFM

[8] Erdős, P., Graham, R. L.: Old and New Problems and Results in Combinatorial Number Theory. Monographs of L'Enseignement Mathématique 28. L'Enseignement Mathématique, Université de Genève, Genève (1980). | MR | JFM

[9] Erdős, P., Selfridge, J. L.: The product of consecutive integers is never a power. Ill. J. Math. 19 (1975), 292-301. | DOI | MR | JFM

[10] Hildebrand, A., Tenenbaum, G.: Integers without large prime factors. J. Théor. Nombres Bordx. 5 (1993), 411-484. | DOI | MR | JFM

[11] Le, M.: A conjecture concerning the Smarandache dual function. Smarandache Notion J. 14 (2004), 153-155. | MR | JFM

[12] Luca, F.: On a divisibility property involving factorials. C. R. Acad. Bulg. Sci. 53 (2000), 35-38. | MR | JFM

[13] Luca, F., Stănică, P.: On the prime power factorization of $n!$. J. Number Theory 102 (2003), 298-305. | DOI | MR | JFM

[14] Moree, P., Roskam, H.: On an arithmetical function related to Euler's totient and the discriminantor. Fibonacci Q. 33 (1995), 332-340. | MR | JFM

[15] Nagura, J.: On the interval containing at least one prime number. Proc. Japan Acad. 28 (1952), 177-181. | DOI | MR | JFM

[16] Rosser, J. B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6 (1962), 64-94. | DOI | MR | JFM

[17] Sándor, J.: On values of arithmetical functions at factorials I. Smarandache Notions J. 10 (1999), 87-94. | MR | JFM

[18] Sándor, J.: On certain generalizations of the Smarandache function. Smarandache Notions J. 11 (2000), 202-212. | MR

[19] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics 46. Cambridge University Press, Cambridge (1995). | MR | JFM

Cité par Sources :