On a divisibility problem
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 125-135.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \geq 5 $, then $$ (p_{k+1}-1)! \mid (\tfrac {1}{2} (p_{k +1} - 1))! p_ {k}!, $$ which improves a previous result of the second author.
DOI : 10.21136/MB.2018.0058-17
Classification : 11A25, 11B83
Keywords: prime; divisibility; exponent; Sándor-Luca's theorem
@article{10_21136_MB_2018_0058_17,
     author = {Yang, Shichun and Luca, Florian and Togb\'e, Alain},
     title = {On a divisibility problem},
     journal = {Mathematica Bohemica},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2019},
     doi = {10.21136/MB.2018.0058-17},
     mrnumber = {3974182},
     zbl = {07088840},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/}
}
TY  - JOUR
AU  - Yang, Shichun
AU  - Luca, Florian
AU  - Togbé, Alain
TI  - On a divisibility problem
JO  - Mathematica Bohemica
PY  - 2019
SP  - 125
EP  - 135
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/
DO  - 10.21136/MB.2018.0058-17
LA  - en
ID  - 10_21136_MB_2018_0058_17
ER  - 
%0 Journal Article
%A Yang, Shichun
%A Luca, Florian
%A Togbé, Alain
%T On a divisibility problem
%J Mathematica Bohemica
%D 2019
%P 125-135
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/
%R 10.21136/MB.2018.0058-17
%G en
%F 10_21136_MB_2018_0058_17
Yang, Shichun; Luca, Florian; Togbé, Alain. On a divisibility problem. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 125-135. doi : 10.21136/MB.2018.0058-17. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/

Cité par Sources :