On a divisibility problem
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 125-135
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \geq 5 $, then $$ (p_{k+1}-1)! \mid (\tfrac {1}{2} (p_{k +1} - 1))! p_ {k}!, $$ which improves a previous result of the second author.
DOI :
10.21136/MB.2018.0058-17
Classification :
11A25, 11B83
Keywords: prime; divisibility; exponent; Sándor-Luca's theorem
Keywords: prime; divisibility; exponent; Sándor-Luca's theorem
@article{10_21136_MB_2018_0058_17,
author = {Yang, Shichun and Luca, Florian and Togb\'e, Alain},
title = {On a divisibility problem},
journal = {Mathematica Bohemica},
pages = {125--135},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {2019},
doi = {10.21136/MB.2018.0058-17},
mrnumber = {3974182},
zbl = {07088840},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/}
}
TY - JOUR AU - Yang, Shichun AU - Luca, Florian AU - Togbé, Alain TI - On a divisibility problem JO - Mathematica Bohemica PY - 2019 SP - 125 EP - 135 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0058-17/ DO - 10.21136/MB.2018.0058-17 LA - en ID - 10_21136_MB_2018_0058_17 ER -
Yang, Shichun; Luca, Florian; Togbé, Alain. On a divisibility problem. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 125-135. doi: 10.21136/MB.2018.0058-17
Cité par Sources :