Keywords: $\mathscr {A}$-summability; modular space; abstract Korovkin theory
@article{10_21136_MB_2018_0057_17,
author = {Ta\c{s}, Emre},
title = {Abstract {Korovkin} type theorems on modular spaces by $\mathscr {A}$-summability},
journal = {Mathematica Bohemica},
pages = {419--430},
year = {2018},
volume = {143},
number = {4},
doi = {10.21136/MB.2018.0057-17},
mrnumber = {3895265},
zbl = {06997375},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0057-17/}
}
TY - JOUR
AU - Taş, Emre
TI - Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability
JO - Mathematica Bohemica
PY - 2018
SP - 419
EP - 430
VL - 143
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0057-17/
DO - 10.21136/MB.2018.0057-17
LA - en
ID - 10_21136_MB_2018_0057_17
ER -
Taş, Emre. Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 419-430. doi: 10.21136/MB.2018.0057-17
[1] Altomare, F.: Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 5 (2010), 92-164. | MR | JFM
[2] Altomare, F., Diomede, S.: Contractive Korovkin subsets in weighted spaces of continuous functions. Rend. Circ. Mat. Palermo II. Ser. 50 (2001), 547-568. | DOI | MR | JFM
[3] Atlihan, Ö. G., Taş, E.: An abstract version of the Korovkin theorem via $\Cal A$-summation process. Acta Math. Hung. 145 (2015), 360-368. | DOI | MR | JFM
[4] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Abstract Korovkin-type theorems in modular spaces and applications. Cent. Eur. J. Math. 11 (2013), 1774-1784. | DOI | MR | JFM
[5] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Modular filter convergence theorems for abstract sampling type operators. Appl. Anal. 92 (2013), 2404-2423. | DOI | MR | JFM
[6] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Korovkin-type theorems for modular $\Psi$-$A$-statistical convergence. J. Funct. Spaces 2015 (2015), Article ID 160401, 11 pages. | DOI | MR | JFM
[7] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Triangular $A$-statistical approximation by double sequences of positive linear operators. Result. Math. 68 (2015), 271-291. | DOI | MR | JFM
[8] Bardaro, C., Mantellini, I.: Korovkin theorem in modular spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 239-253. | MR | JFM
[9] Bardaro, C., Mantellini, I.: Multivariate moment type operators: approximation properties in Orlicz spaces. J. Math. Inequal. 2 (2008), 247-259. | DOI | MR | JFM
[10] Bardaro, C., Mantellini, I.: A Korovkin theorem in multivariate modular function spaces. J. Funct. Spaces Appl. 7 (2009), 105-120. | DOI | MR | JFM
[11] Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications. De Gruyter Series in Nonlinear Analysis and Applications 9. Walter de Gruyter, Berlin (2003). | MR | JFM
[12] Bell, H. T.: Order summability and almost convergence. Proc. Am. Math. Soc. 38 (1973), 548-552. | DOI | MR | JFM
[13] Boccuto, A., Dimitriou, X.: Modular filter convergence theorems for Urysohn integral operators and applications. Acta Math. Sin., Engl. Ser. 29 (2013), 1055-1066. | DOI | MR | JFM
[14] Demirci, K., Orhan, S.: Statistical relative approximation on modular spaces. Result. Math. 71 (2017), 1167-1184. | DOI | MR
[15] Karakuş, S., Demirci, K.: Matrix summability and Korovkin type approximation theorem on modular spaces. Acta Math. Univ. Comen., New Ser. 79 (2010), 281-292. | MR | JFM
[16] Karakuş, S., Demirci, K., Duman, O.: Statistical approximation by positive linear operators on modular spaces. Positivity 14 (2010), 321-334. | DOI | MR | JFM
[17] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034. Springer, Berlin (1983). | DOI | MR | JFM
[18] Musielak, J., Orlicz, W.: On modular spaces. Studia Math. 18 (1959), 49-65. | DOI | MR | JFM
[19] Nakano, H.: Modulared Semi-Ordered Linear Spaces. Tokyo Math. Book Series, Vol. 1. Maruzen, Tokyo (1950). | MR | JFM
[20] Orhan, S., Demirci, K.: Statistical ${\scr A}$-summation process and Korovkin type approximation theorem on modular spaces. Positivity 18 (2014), 669-686. | DOI | MR | JFM
[21] Sakaoğlu, I., Orhan, C.: Strong summation process in $L_{p}$ spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 86 (2013), 89-94. | DOI | MR | JFM
Cité par Sources :