Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability
Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 419-430
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim is to change classical test functions of Korovkin theorem on modular spaces by using $\mathscr {A}$-summability.
Our aim is to change classical test functions of Korovkin theorem on modular spaces by using $\mathscr {A}$-summability.
DOI : 10.21136/MB.2018.0057-17
Classification : 40C05, 41A36
Keywords: $\mathscr {A}$-summability; modular space; abstract Korovkin theory
@article{10_21136_MB_2018_0057_17,
     author = {Ta\c{s}, Emre},
     title = {Abstract {Korovkin} type theorems on modular spaces by $\mathscr {A}$-summability},
     journal = {Mathematica Bohemica},
     pages = {419--430},
     year = {2018},
     volume = {143},
     number = {4},
     doi = {10.21136/MB.2018.0057-17},
     mrnumber = {3895265},
     zbl = {06997375},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0057-17/}
}
TY  - JOUR
AU  - Taş, Emre
TI  - Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability
JO  - Mathematica Bohemica
PY  - 2018
SP  - 419
EP  - 430
VL  - 143
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0057-17/
DO  - 10.21136/MB.2018.0057-17
LA  - en
ID  - 10_21136_MB_2018_0057_17
ER  - 
%0 Journal Article
%A Taş, Emre
%T Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability
%J Mathematica Bohemica
%D 2018
%P 419-430
%V 143
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0057-17/
%R 10.21136/MB.2018.0057-17
%G en
%F 10_21136_MB_2018_0057_17
Taş, Emre. Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 419-430. doi: 10.21136/MB.2018.0057-17

[1] Altomare, F.: Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 5 (2010), 92-164. | MR | JFM

[2] Altomare, F., Diomede, S.: Contractive Korovkin subsets in weighted spaces of continuous functions. Rend. Circ. Mat. Palermo II. Ser. 50 (2001), 547-568. | DOI | MR | JFM

[3] Atlihan, Ö. G., Taş, E.: An abstract version of the Korovkin theorem via $\Cal A$-summation process. Acta Math. Hung. 145 (2015), 360-368. | DOI | MR | JFM

[4] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Abstract Korovkin-type theorems in modular spaces and applications. Cent. Eur. J. Math. 11 (2013), 1774-1784. | DOI | MR | JFM

[5] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Modular filter convergence theorems for abstract sampling type operators. Appl. Anal. 92 (2013), 2404-2423. | DOI | MR | JFM

[6] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Korovkin-type theorems for modular $\Psi$-$A$-statistical convergence. J. Funct. Spaces 2015 (2015), Article ID 160401, 11 pages. | DOI | MR | JFM

[7] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Triangular $A$-statistical approximation by double sequences of positive linear operators. Result. Math. 68 (2015), 271-291. | DOI | MR | JFM

[8] Bardaro, C., Mantellini, I.: Korovkin theorem in modular spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 239-253. | MR | JFM

[9] Bardaro, C., Mantellini, I.: Multivariate moment type operators: approximation properties in Orlicz spaces. J. Math. Inequal. 2 (2008), 247-259. | DOI | MR | JFM

[10] Bardaro, C., Mantellini, I.: A Korovkin theorem in multivariate modular function spaces. J. Funct. Spaces Appl. 7 (2009), 105-120. | DOI | MR | JFM

[11] Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications. De Gruyter Series in Nonlinear Analysis and Applications 9. Walter de Gruyter, Berlin (2003). | MR | JFM

[12] Bell, H. T.: Order summability and almost convergence. Proc. Am. Math. Soc. 38 (1973), 548-552. | DOI | MR | JFM

[13] Boccuto, A., Dimitriou, X.: Modular filter convergence theorems for Urysohn integral operators and applications. Acta Math. Sin., Engl. Ser. 29 (2013), 1055-1066. | DOI | MR | JFM

[14] Demirci, K., Orhan, S.: Statistical relative approximation on modular spaces. Result. Math. 71 (2017), 1167-1184. | DOI | MR

[15] Karakuş, S., Demirci, K.: Matrix summability and Korovkin type approximation theorem on modular spaces. Acta Math. Univ. Comen., New Ser. 79 (2010), 281-292. | MR | JFM

[16] Karakuş, S., Demirci, K., Duman, O.: Statistical approximation by positive linear operators on modular spaces. Positivity 14 (2010), 321-334. | DOI | MR | JFM

[17] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034. Springer, Berlin (1983). | DOI | MR | JFM

[18] Musielak, J., Orlicz, W.: On modular spaces. Studia Math. 18 (1959), 49-65. | DOI | MR | JFM

[19] Nakano, H.: Modulared Semi-Ordered Linear Spaces. Tokyo Math. Book Series, Vol. 1. Maruzen, Tokyo (1950). | MR | JFM

[20] Orhan, S., Demirci, K.: Statistical ${\scr A}$-summation process and Korovkin type approximation theorem on modular spaces. Positivity 18 (2014), 669-686. | DOI | MR | JFM

[21] Sakaoğlu, I., Orhan, C.: Strong summation process in $L_{p}$ spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 86 (2013), 89-94. | DOI | MR | JFM

Cité par Sources :