Generalization of the weak amenability on various Banach algebras
Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra ${\mathcal A}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well.
The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra ${\mathcal A}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well.
DOI : 10.21136/MB.2018.0046-17
Classification : 43A20, 46H20
Keywords: Banach algebra; $(\varphi, \psi )$-derivation; group algebra; locally compact group; measure algebra; Segal algebra; weak amenability
@article{10_21136_MB_2018_0046_17,
     author = {Eshaghi Gordji, Madjid and Jabbari, Ali and Bodaghi, Abasalt},
     title = {Generalization of the weak amenability on various {Banach} algebras},
     journal = {Mathematica Bohemica},
     pages = {1--11},
     year = {2019},
     volume = {144},
     number = {1},
     doi = {10.21136/MB.2018.0046-17},
     mrnumber = {3934194},
     zbl = {07088832},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0046-17/}
}
TY  - JOUR
AU  - Eshaghi Gordji, Madjid
AU  - Jabbari, Ali
AU  - Bodaghi, Abasalt
TI  - Generalization of the weak amenability on various Banach algebras
JO  - Mathematica Bohemica
PY  - 2019
SP  - 1
EP  - 11
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0046-17/
DO  - 10.21136/MB.2018.0046-17
LA  - en
ID  - 10_21136_MB_2018_0046_17
ER  - 
%0 Journal Article
%A Eshaghi Gordji, Madjid
%A Jabbari, Ali
%A Bodaghi, Abasalt
%T Generalization of the weak amenability on various Banach algebras
%J Mathematica Bohemica
%D 2019
%P 1-11
%V 144
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0046-17/
%R 10.21136/MB.2018.0046-17
%G en
%F 10_21136_MB_2018_0046_17
Eshaghi Gordji, Madjid; Jabbari, Ali; Bodaghi, Abasalt. Generalization of the weak amenability on various Banach algebras. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 1-11. doi: 10.21136/MB.2018.0046-17

[1] Bade, W. G., Jr., P. C. Curtis, Dales, H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. Lond. Math. Soc., III. Ser. 55 (1987), 359-377. | DOI | MR | JFM

[2] Bodaghi, A.: Module $(\varphi,\psi)$-amenability of Banach algeras. Arch. Math., Brno 46 (2010), 227-235. | MR | JFM

[3] Bodaghi, A.: Generalized notion of weak module amenability. Hacet. J. Math. Stat. 43 (2014), 85-95. | MR | JFM

[4] Bodaghi, A., Gordji, M. Eshaghi, Medghalchi, A. R.: A generalization of the weak amenability of Banach algebras. Banach J. Math. Anal. 3 (2009), 131-142. | DOI | MR | JFM

[5] Bodaghi, A., Shojaee, B.: A generalized notion of $n$-weak amenability. Math. Bohemica 139 (2014), 99-112. | MR | JFM

[6] Dales, H. G., Ghahramani, F., Helemskii, A. Ya.: The amenability of measure algebras. J. Lond. Math. Soc., II. Ser. 66 (2002), 213-226. | DOI | MR | JFM

[7] Dales, H. G., Pandey, S. S.: Weak amenability of Segal algebras. Proc. Am. Math. Soc. 128 (2000), 1419-1425. | DOI | MR | JFM

[8] Despić, M., Ghahramani,, F.: Weak amenability of group algebras of locally compact groups. Can. Math. Bull. 37 (1994), 165-167. | DOI | MR | JFM

[9] Ghahramani, F., Lau, A. T. M.: Weak amenability of certain classes of Banach algebras without bounded approximate identities. Math. Proc. Camb. Philos. Soc. 133 (2002), 357-371. | DOI | MR | JFM

[10] Grønbæk, N.: A characterization of weakly amenable Banach algebras. Studia Math. 94 (1989), 149-162. | DOI | MR | JFM

[11] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations. Grundlehren der mathematischen Wissenschaften 115. A Series of Comprehensive Studies in Mathematics. Springer, Berlin (1979). | DOI | MR | JFM

[12] Johnson, B. E.: Cohomology in Banach Algebras. Mem. Am. Math. Soc. 127. AMS, Providence (1972). | MR | JFM

[13] Johnson, B. E.: Weak amenability of group algebras. Bull. Lond. Math. Soc. 23 (1991), 281-284. | DOI | MR | JFM

[14] Lau, A. T. M., Loy, R. J.: Weak amenability of Banach algebras on locally compact groups. J. Funct. Anal. 145 (1997), 175-204. | DOI | MR | JFM

[15] Moslehian, M. S., Motlagh, A. N.: Some notes on $(\sigma,\tau)$-amenability of Banach algebras. Stud. Univ. Babeş-Bolyai, Math. 53 (2008), 57-68. | MR | JFM

[16] Reiter, H., Stegeman, J. D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. New Series 22. Clarendon Press, Oxford (2000). | MR | JFM

[17] Zhang, Y.: Weak amenability of a class of Banach algebras. Can. Math. Bull. 44 (2001), 504-508. | DOI | MR | JFM

Cité par Sources :