Norm estimates for Bessel-Riesz operators on generalized Morrey spaces
Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 409-417
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We revisit the properties of Bessel-Riesz operators and present a different proof of the boundedness of these operators on generalized Morrey spaces. We also obtain an estimate for the norm of these operators on generalized Morrey spaces in terms of the norm of their kernels on an associated Morrey space. As a consequence of our results, we reprove the boundedness of fractional integral operators on generalized Morrey spaces, especially of exponent $1$, and obtain a new estimate for their norm.
We revisit the properties of Bessel-Riesz operators and present a different proof of the boundedness of these operators on generalized Morrey spaces. We also obtain an estimate for the norm of these operators on generalized Morrey spaces in terms of the norm of their kernels on an associated Morrey space. As a consequence of our results, we reprove the boundedness of fractional integral operators on generalized Morrey spaces, especially of exponent $1$, and obtain a new estimate for their norm.
DOI : 10.21136/MB.2018.0045-17
Classification : 26A33, 26D10, 42B20, 42B25
Keywords: Bessel-Riesz operator; fractional integral operator; generalized Morrey space
@article{10_21136_MB_2018_0045_17,
     author = {Idris, Mochammad and Gunawan, Hendra and Eridani, A.},
     title = {Norm estimates for {Bessel-Riesz} operators on generalized {Morrey} spaces},
     journal = {Mathematica Bohemica},
     pages = {409--417},
     year = {2018},
     volume = {143},
     number = {4},
     doi = {10.21136/MB.2018.0045-17},
     mrnumber = {3895264},
     zbl = {06997374},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0045-17/}
}
TY  - JOUR
AU  - Idris, Mochammad
AU  - Gunawan, Hendra
AU  - Eridani, A.
TI  - Norm estimates for Bessel-Riesz operators on generalized Morrey spaces
JO  - Mathematica Bohemica
PY  - 2018
SP  - 409
EP  - 417
VL  - 143
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0045-17/
DO  - 10.21136/MB.2018.0045-17
LA  - en
ID  - 10_21136_MB_2018_0045_17
ER  - 
%0 Journal Article
%A Idris, Mochammad
%A Gunawan, Hendra
%A Eridani, A.
%T Norm estimates for Bessel-Riesz operators on generalized Morrey spaces
%J Mathematica Bohemica
%D 2018
%P 409-417
%V 143
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0045-17/
%R 10.21136/MB.2018.0045-17
%G en
%F 10_21136_MB_2018_0045_17
Idris, Mochammad; Gunawan, Hendra; Eridani, A. Norm estimates for Bessel-Riesz operators on generalized Morrey spaces. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 409-417. doi: 10.21136/MB.2018.0045-17

[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. | DOI | MR | JFM

[2] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 679-693. | MR | JFM

[3] Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York (2008). | DOI | MR | JFM

[4] Gunawan, H., Eridani: Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 49 (2009), 31-39. | DOI | MR | JFM

[5] Gunawan, H., Hakim, D. I., Limanta, K. M., Masta, A. A.: Inclusion properties of generalized Morrey spaces. Math. Nachr. 290 (2017), 332-340. | DOI | MR | JFM

[6] Hardy, G. H., Littlewood, J. E.: Some properties of fractional integrals I. Math. Z. 27 (1928), 565-606 \99999JFM99999 54.0275.05. | DOI | MR

[7] Hardy, G. H., Littlewood, J. E.: Some properties of fractional integrals II. Math. Z. 34 (1932), 403-439. | DOI | MR | JFM

[8] Idris, M., Gunawan, H., Eridani: The boundedness of Bessel-Riesz operators on generalized Morrey spaces. Aust. J. Math. Anal. Appl. 13 (2016), Article ID 9, 10 pages. | MR | JFM

[9] Idris, M., Gunawan, H., Lindiarni, J., Eridani: The boundedness of Bessel-Riesz operators on Morrey spaces. Int. Symp. On Current Progress in Mathematics and Sciences 2015. AIP Conf. Proc 1729 (2016), Article No. 020006. | DOI | MR

[10] Lieb, E. H., Loss, M.: Analysis. Graduate Studies in Mathematics 14. AMS, Providence (2001). | DOI | MR | JFM

[11] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103. | DOI | MR | JFM

[12] Peetre, J.: On the theory of ${\cal L}_p,_{\lambda}$ spaces. J. Functional Analysis 4 (1969), 71-87. | DOI | MR | JFM

[13] Sobolev, S. L.: On a theorem of functional analysis. Am. Math. Soc., Transl., II. Ser. 34 (1963), 39-68 Translated from Mat. Sb., N. Ser. 4 1938 471-497. | DOI | JFM

Cité par Sources :