Keywords: McShane integral; weak McShane integral; multiplier
@article{10_21136_MB_2018_0044_17,
author = {Sayyad, Redouane},
title = {The multiplier for the weak {McShane} integral},
journal = {Mathematica Bohemica},
pages = {13--24},
year = {2019},
volume = {144},
number = {1},
doi = {10.21136/MB.2018.0044-17},
mrnumber = {3934195},
zbl = {07088833},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0044-17/}
}
Sayyad, Redouane. The multiplier for the weak McShane integral. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 13-24. doi: 10.21136/MB.2018.0044-17
[1] Piazza, L. Di, Marraffa, V.: An equivalent definition of the vector-valued McShane integral by means of partitions of unity. Stud. Math. 151 (2002), 175-185. | DOI | MR | JFM
[2] Dunford, N., Pettis, B. J.: Linear operations on summable functions. Trans. Am. Math. Soc. 47 (1940), 323-392. | DOI | MR | JFM
[3] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | JFM
[4] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations. Torres Fremlin, Colchester (2003). | MR | JFM
[5] Fremlin, D. H.: Measure Theory. Vol. 4. Topological Measure Spaces. Part I, II. Torres Fremlin, Colchester (2006). | MR | JFM
[6] Geitz, R. F.: Pettis integration. Proc. Am. Math. Soc. 82 (1981), 81-86. | DOI | MR | JFM
[7] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25. Springer, New York (1965). | DOI | MR | JFM
[8] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. | MR | JFM
[9] Saadoune, M., Sayyad, R.: The weak McShane integral. Czech. Math. J. 64 (2014), 387-418. | DOI | MR | JFM
[10] Sayyad, R.: The McShane integral in the limit. Real Anal. Exch. 42 (2017), 283-310. | DOI | MR
Cité par Sources :