Keywords: semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal
@article{10_21136_MB_2018_0043_17,
author = {Xuan, Wei-Feng and Song, Yan-Kui},
title = {Some results on semi-stratifiable spaces},
journal = {Mathematica Bohemica},
pages = {113--123},
year = {2019},
volume = {144},
number = {2},
doi = {10.21136/MB.2018.0043-17},
mrnumber = {3974181},
zbl = {07088839},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0043-17/}
}
TY - JOUR AU - Xuan, Wei-Feng AU - Song, Yan-Kui TI - Some results on semi-stratifiable spaces JO - Mathematica Bohemica PY - 2019 SP - 113 EP - 123 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0043-17/ DO - 10.21136/MB.2018.0043-17 LA - en ID - 10_21136_MB_2018_0043_17 ER -
Xuan, Wei-Feng; Song, Yan-Kui. Some results on semi-stratifiable spaces. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 113-123. doi: 10.21136/MB.2018.0043-17
[1] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On the extent of star countable spaces. Cent. Eur. J. Math. 9 (2011), 603-615. | DOI | MR | JFM
[2] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties. Topology Appl. 158 (2011), 620-626. | DOI | MR | JFM
[3] Arhangel'skii, A. A., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. | MR | JFM
[4] Basile, D., Bella, A., Ridderbos, G. J.: Weak extent, submetrizability and diagonal degrees. Houston J. Math. 40 (2014), 255-266. | MR | JFM
[5] Creede, G. D.: Concerning semi-stratifiable spaces. Pac. J. Math. 32 (1970), 47-54. | DOI | MR | JFM
[6] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). | MR | JFM
[7] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals. Avaible at https://scirate.com/arxiv/1504.01785 | MR
[8] Gruenhage, G.: Generalized metric spaces. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 423-501 K. Kunen et al. | DOI | MR | JFM
[9] Hodel, R.: Cardinal functions. I. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. | MR | JFM
[10] Ikenaga, S.: Topological concept between Lindelöf and Pseudo-Lindelöf. Research Reports of Nara National College of Technology 26 (1990), 103-108 Japanese.
[11] Juhász, I.: Cardinal Functions in Topology. Mathematical Centre Tracts 34. Mathematisch Centrum, Amsterdam (1971). | MR | JFM
[12] Rojas-Sánchez, A. D., Tamariz-Mascarúa, Á.: Spaces with star countable extent. Commentat. Math. Univ. Carol. 57 (2016), 381-395. | DOI | MR | JFM
[13] Šapirovskij, B. E.: On separability and metrizability of spaces with Souslin's condition. Sov. Math. Dokl. 13 (1972), 1633-1638 translation from Dokl. Akad. Nauk SSSR 207 1972 800-803\kern0pt. | MR | JFM
[14] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. | DOI | MR | JFM
[15] Wiscamb, M. R.: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612. | DOI | MR | JFM
[16] Xuan, W. F.: Symmetric $g$-functions and cardinal inequalities. Topology Appl. 221 (2017), 51-58. | DOI | MR | JFM
[17] Yu, Z.: A note on the extent of two subclasses of star countable spaces. Cent. Eur. J. Math. 10 (2012), 1067-1070. | DOI | MR | JFM
[18] Zenor, P.: On spaces with regular $G_\delta $-diagonal. Pac. J. Math. 40 (1972), 759-763. | DOI | MR | JFM
Cité par Sources :