Some results on semi-stratifiable spaces
Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 113-123
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: \endgraf (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; \endgraf (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; \endgraf (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. \endgraf Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^{\Delta (X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^{\omega }$ for any semi-stratifiable space $X$.
We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: \endgraf (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; \endgraf (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; \endgraf (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. \endgraf Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^{\Delta (X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^{\omega }$ for any semi-stratifiable space $X$.
DOI : 10.21136/MB.2018.0043-17
Classification : 54D20, 54E35
Keywords: semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal
@article{10_21136_MB_2018_0043_17,
     author = {Xuan, Wei-Feng and Song, Yan-Kui},
     title = {Some results on semi-stratifiable spaces},
     journal = {Mathematica Bohemica},
     pages = {113--123},
     year = {2019},
     volume = {144},
     number = {2},
     doi = {10.21136/MB.2018.0043-17},
     mrnumber = {3974181},
     zbl = {07088839},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0043-17/}
}
TY  - JOUR
AU  - Xuan, Wei-Feng
AU  - Song, Yan-Kui
TI  - Some results on semi-stratifiable spaces
JO  - Mathematica Bohemica
PY  - 2019
SP  - 113
EP  - 123
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0043-17/
DO  - 10.21136/MB.2018.0043-17
LA  - en
ID  - 10_21136_MB_2018_0043_17
ER  - 
%0 Journal Article
%A Xuan, Wei-Feng
%A Song, Yan-Kui
%T Some results on semi-stratifiable spaces
%J Mathematica Bohemica
%D 2019
%P 113-123
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0043-17/
%R 10.21136/MB.2018.0043-17
%G en
%F 10_21136_MB_2018_0043_17
Xuan, Wei-Feng; Song, Yan-Kui. Some results on semi-stratifiable spaces. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 113-123. doi: 10.21136/MB.2018.0043-17

[1] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On the extent of star countable spaces. Cent. Eur. J. Math. 9 (2011), 603-615. | DOI | MR | JFM

[2] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties. Topology Appl. 158 (2011), 620-626. | DOI | MR | JFM

[3] Arhangel'skii, A. A., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. | MR | JFM

[4] Basile, D., Bella, A., Ridderbos, G. J.: Weak extent, submetrizability and diagonal degrees. Houston J. Math. 40 (2014), 255-266. | MR | JFM

[5] Creede, G. D.: Concerning semi-stratifiable spaces. Pac. J. Math. 32 (1970), 47-54. | DOI | MR | JFM

[6] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). | MR | JFM

[7] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals. Avaible at https://scirate.com/arxiv/1504.01785 | MR

[8] Gruenhage, G.: Generalized metric spaces. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 423-501 K. Kunen et al. | DOI | MR | JFM

[9] Hodel, R.: Cardinal functions. I. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. | MR | JFM

[10] Ikenaga, S.: Topological concept between Lindelöf and Pseudo-Lindelöf. Research Reports of Nara National College of Technology 26 (1990), 103-108 Japanese.

[11] Juhász, I.: Cardinal Functions in Topology. Mathematical Centre Tracts 34. Mathematisch Centrum, Amsterdam (1971). | MR | JFM

[12] Rojas-Sánchez, A. D., Tamariz-Mascarúa, Á.: Spaces with star countable extent. Commentat. Math. Univ. Carol. 57 (2016), 381-395. | DOI | MR | JFM

[13] Šapirovskij, B. E.: On separability and metrizability of spaces with Souslin's condition. Sov. Math. Dokl. 13 (1972), 1633-1638 translation from Dokl. Akad. Nauk SSSR 207 1972 800-803\kern0pt. | MR | JFM

[14] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. | DOI | MR | JFM

[15] Wiscamb, M. R.: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612. | DOI | MR | JFM

[16] Xuan, W. F.: Symmetric $g$-functions and cardinal inequalities. Topology Appl. 221 (2017), 51-58. | DOI | MR | JFM

[17] Yu, Z.: A note on the extent of two subclasses of star countable spaces. Cent. Eur. J. Math. 10 (2012), 1067-1070. | DOI | MR | JFM

[18] Zenor, P.: On spaces with regular $G_\delta $-diagonal. Pac. J. Math. 40 (1972), 759-763. | DOI | MR | JFM

Cité par Sources :