On the cardinality of Urysohn spaces and weakly $H$-closed spaces
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 325-336
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We introduce the cardinal invariant $\theta $-$aL'(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\leq 2^{\theta \text {-}aL'(X)\chi (X)}$. As $\theta $-$aL'(X)\leq aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. \endgraf We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces.
We introduce the cardinal invariant $\theta $-$aL'(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\leq 2^{\theta \text {-}aL'(X)\chi (X)}$. As $\theta $-$aL'(X)\leq aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. \endgraf We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces.
DOI :
10.21136/MB.2018.0037-18
Classification :
54A25, 54D10, 54D20
Keywords: Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant
Keywords: Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant
@article{10_21136_MB_2018_0037_18,
author = {Basile, Fortunata Aurora and Carlson, Nathan},
title = {On the cardinality of {Urysohn} spaces and weakly $H$-closed spaces},
journal = {Mathematica Bohemica},
pages = {325--336},
year = {2019},
volume = {144},
number = {3},
doi = {10.21136/MB.2018.0037-18},
mrnumber = {3985860},
zbl = {07088854},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/}
}
TY - JOUR AU - Basile, Fortunata Aurora AU - Carlson, Nathan TI - On the cardinality of Urysohn spaces and weakly $H$-closed spaces JO - Mathematica Bohemica PY - 2019 SP - 325 EP - 336 VL - 144 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/ DO - 10.21136/MB.2018.0037-18 LA - en ID - 10_21136_MB_2018_0037_18 ER -
%0 Journal Article %A Basile, Fortunata Aurora %A Carlson, Nathan %T On the cardinality of Urysohn spaces and weakly $H$-closed spaces %J Mathematica Bohemica %D 2019 %P 325-336 %V 144 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/ %R 10.21136/MB.2018.0037-18 %G en %F 10_21136_MB_2018_0037_18
Basile, Fortunata Aurora; Carlson, Nathan. On the cardinality of Urysohn spaces and weakly $H$-closed spaces. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 325-336. doi: 10.21136/MB.2018.0037-18
Cité par Sources :