Keywords: Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant
@article{10_21136_MB_2018_0037_18,
author = {Basile, Fortunata Aurora and Carlson, Nathan},
title = {On the cardinality of {Urysohn} spaces and weakly $H$-closed spaces},
journal = {Mathematica Bohemica},
pages = {325--336},
year = {2019},
volume = {144},
number = {3},
doi = {10.21136/MB.2018.0037-18},
mrnumber = {3985860},
zbl = {07088854},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/}
}
TY - JOUR AU - Basile, Fortunata Aurora AU - Carlson, Nathan TI - On the cardinality of Urysohn spaces and weakly $H$-closed spaces JO - Mathematica Bohemica PY - 2019 SP - 325 EP - 336 VL - 144 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/ DO - 10.21136/MB.2018.0037-18 LA - en ID - 10_21136_MB_2018_0037_18 ER -
%0 Journal Article %A Basile, Fortunata Aurora %A Carlson, Nathan %T On the cardinality of Urysohn spaces and weakly $H$-closed spaces %J Mathematica Bohemica %D 2019 %P 325-336 %V 144 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/ %R 10.21136/MB.2018.0037-18 %G en %F 10_21136_MB_2018_0037_18
Basile, Fortunata Aurora; Carlson, Nathan. On the cardinality of Urysohn spaces and weakly $H$-closed spaces. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 325-336. doi: 10.21136/MB.2018.0037-18
[1] Alas, O. T., Kočinac, L. D.: More cardinal inequalities on Urysohn spaces. Math. Balk., New Ser. 14 (2000), 247-251. | MR | JFM
[2] Basile, F. A., Bonanzinga, M., Carlson, N.: Variations on known and recent cardinality bounds. Topology Appl. 240 (2018), 228-237. | DOI | MR | JFM
[3] Bell, M., Ginsburg, J., Woods, G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number. Pac. J. Math. 79 (1979), 37-45. | DOI | MR | JFM
[4] Bella, A., Cammaroto, F.: On the cardinality of Urysohn spaces. Can. Math. Bull. 31 (1988), 153-158. | DOI | MR | JFM
[5] Cammaroto, F., Catalioto, A., Pansera, B. A., Tsaban, B.: On the cardinality of the $\theta$-closed hull of sets. Topology Appl. 160 (2013), 2371-2378. | DOI | MR | JFM
[6] Cammaroto, F., Kočinac, L.: On $\theta$-tightness. Facta Univ., Ser. Math. Inf. 8 (1993), 77-85. | MR | JFM
[7] Carlson, N. A., Porter, J. R.: On the cardinality of Hausdorff spaces and $H$-closed spaces. Topology Appl. 241 (2018), 377-395. | DOI | MR | JFM
[8] Engelking, R.: General Topology. Wydawnictwo Naukowe PWN, Warsaw Polish (2007). | MR | JFM
[9] Hodel, R. E.: Arhangel'ski{\uı's solution to Alexandroff's problem: a survey. Topology Appl. 153 (2006), 2199-2217. | DOI | MR | JFM
[10] Kočinac, L. D.: On the cardinality of Urysohn and $H$-closed spaces. Proc. Math. Conf., Priština, 1994 Univ. of Priština, Faculty of Sciences, Priština (1995), L. D. Kočinac 105-111. | MR | JFM
[11] Kočinac, L. D.: On the cardinality of Urysohn spaces. Questions and Answers in General Topology 13 (1995), 211-216. | MR | JFM
[12] Porter, J. R., Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces. Springer, New York (1988). | DOI | MR | JFM
[13] Veličko, N. V.: $H$-closed topological spaces. Am. Math. Soc., Transl., II. Ser. 78 (1968), 103-118 translated from Mat. Sb., n. Ser. 70 1966 98-112. | DOI | MR | JFM
[14] Willard, S., Dissanayake, U. N. B.: The almost Lindelöf degree. Can. Math. Bull. 27 (1984), 452-455. | DOI | MR | JFM
Cité par Sources :