On the cardinality of Urysohn spaces and weakly $H$-closed spaces
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 325-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the cardinal invariant $\theta $-$aL'(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\leq 2^{\theta \text {-}aL'(X)\chi (X)}$. As $\theta $-$aL'(X)\leq aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. \endgraf We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces.
DOI : 10.21136/MB.2018.0037-18
Classification : 54A25, 54D10, 54D20
Keywords: Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant
@article{10_21136_MB_2018_0037_18,
     author = {Basile, Fortunata Aurora and Carlson, Nathan},
     title = {On the cardinality of {Urysohn} spaces and weakly $H$-closed spaces},
     journal = {Mathematica Bohemica},
     pages = {325--336},
     publisher = {mathdoc},
     volume = {144},
     number = {3},
     year = {2019},
     doi = {10.21136/MB.2018.0037-18},
     mrnumber = {3985860},
     zbl = {07088854},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/}
}
TY  - JOUR
AU  - Basile, Fortunata Aurora
AU  - Carlson, Nathan
TI  - On the cardinality of Urysohn spaces and weakly $H$-closed spaces
JO  - Mathematica Bohemica
PY  - 2019
SP  - 325
EP  - 336
VL  - 144
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/
DO  - 10.21136/MB.2018.0037-18
LA  - en
ID  - 10_21136_MB_2018_0037_18
ER  - 
%0 Journal Article
%A Basile, Fortunata Aurora
%A Carlson, Nathan
%T On the cardinality of Urysohn spaces and weakly $H$-closed spaces
%J Mathematica Bohemica
%D 2019
%P 325-336
%V 144
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/
%R 10.21136/MB.2018.0037-18
%G en
%F 10_21136_MB_2018_0037_18
Basile, Fortunata Aurora; Carlson, Nathan. On the cardinality of Urysohn spaces and weakly $H$-closed spaces. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 325-336. doi : 10.21136/MB.2018.0037-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0037-18/

Cité par Sources :