Keywords: distributive nearlattice; ideal; filter; congruence; annihilator
@article{10_21136_MB_2018_0030_17,
author = {Calomino, Ismael and Celani, Sergio},
title = {Annihilator-preserving congruence relations in distributive nearlattices},
journal = {Mathematica Bohemica},
pages = {391--407},
year = {2018},
volume = {143},
number = {4},
doi = {10.21136/MB.2018.0030-17},
mrnumber = {3895263},
zbl = {06997373},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0030-17/}
}
TY - JOUR AU - Calomino, Ismael AU - Celani, Sergio TI - Annihilator-preserving congruence relations in distributive nearlattices JO - Mathematica Bohemica PY - 2018 SP - 391 EP - 407 VL - 143 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0030-17/ DO - 10.21136/MB.2018.0030-17 LA - en ID - 10_21136_MB_2018_0030_17 ER -
%0 Journal Article %A Calomino, Ismael %A Celani, Sergio %T Annihilator-preserving congruence relations in distributive nearlattices %J Mathematica Bohemica %D 2018 %P 391-407 %V 143 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0030-17/ %R 10.21136/MB.2018.0030-17 %G en %F 10_21136_MB_2018_0030_17
Calomino, Ismael; Celani, Sergio. Annihilator-preserving congruence relations in distributive nearlattices. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 391-407. doi: 10.21136/MB.2018.0030-17
[1] Abbott, J. C.: Semi-boolean algebra. Mat. Vesn., N. Ser. 19 (1967), 177-198. | MR | JFM
[2] Araújo, J., Kinyon, M.: Independent axiom systems for nearlattices. Czech. Math. J. 61 (2011), 975-992. | DOI | MR | JFM
[3] Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices. Miskolc Math. Notes 16 (2015), 65-78. | DOI | MR | JFM
[4] Celani, S. A.: Topological representation of distributive semilattices. Sci. Math. Jpn. 58 (2003), 55-65. | MR | JFM
[5] Celani, S. A.: Remarks on annihilators preserving congruence relations. Math. Slovaca 62 (2012), 389-398. | DOI | MR | JFM
[6] Celani, S. A.: Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices. Open Math. 13 (2015), 165-177. | DOI | MR | JFM
[7] Celani, S., Calomino, I.: Stone style duality for distributive nearlattices. Algebra Universalis 71 (2014), 127-153. | DOI | MR | JFM
[8] Chajda, I., Halaš, R.: An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii, Ser. Math. 13 (2006), 29-31. | MR | JFM
[9] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann Verlag, Lemgo (2007). | MR | JFM
[10] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Natur. Math. 46 (2007), 25-33. | MR | JFM
[11] Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308 (2008), 4906-4913. | DOI | MR | JFM
[12] Cornish, W. H.: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200-215. | DOI | MR | JFM
[13] Cornish, W. H.: Quasicomplemented lattices. Commentat. Math. Univ. Carolinae 15 (1974), 501-511. | MR | JFM
[14] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hung. 32 (1978), 5-16. | DOI | MR | JFM
[15] Halaš, R.: Subdirectly irreducible distributive nearlattices. Miskolc Math. Notes 7 (2006), 141-146. | DOI | MR | JFM
[16] Hickman, R.: Join algebras. Commun. Algebra 8 (1980), 1653-1685. | DOI | MR | JFM
[17] Janowitz, M. F.: Annihilator preserving congruence relations of lattices. Algebra Univers. 5 (1975), 391-394. | DOI | MR | JFM
[18] Stone, M. H.: Topological representations of distributive lattices and Brouwerian logics. Čas. Mat. Fys. 67 (1937), 1-25. | JFM
Cité par Sources :