Lucas factoriangular numbers
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 33-43
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that the only Lucas numbers which are factoriangular are $1$ and $2$.
We show that the only Lucas numbers which are factoriangular are $1$ and $2$.
DOI : 10.21136/MB.2018.0021-18
Classification : 11A25, 11B39, 11J86
Keywords: Lucas number; factoriangular number
@article{10_21136_MB_2018_0021_18,
     author = {Kafle, Bir and Luca, Florian and Togb\'e, Alain},
     title = {Lucas factoriangular numbers},
     journal = {Mathematica Bohemica},
     pages = {33--43},
     year = {2020},
     volume = {145},
     number = {1},
     doi = {10.21136/MB.2018.0021-18},
     mrnumber = {4088691},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0021-18/}
}
TY  - JOUR
AU  - Kafle, Bir
AU  - Luca, Florian
AU  - Togbé, Alain
TI  - Lucas factoriangular numbers
JO  - Mathematica Bohemica
PY  - 2020
SP  - 33
EP  - 43
VL  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0021-18/
DO  - 10.21136/MB.2018.0021-18
LA  - en
ID  - 10_21136_MB_2018_0021_18
ER  - 
%0 Journal Article
%A Kafle, Bir
%A Luca, Florian
%A Togbé, Alain
%T Lucas factoriangular numbers
%J Mathematica Bohemica
%D 2020
%P 33-43
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0021-18/
%R 10.21136/MB.2018.0021-18
%G en
%F 10_21136_MB_2018_0021_18
Kafle, Bir; Luca, Florian; Togbé, Alain. Lucas factoriangular numbers. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 33-43. doi: 10.21136/MB.2018.0021-18

[1] Bravo, J. J., Luca, F.: Powers of two as sums of two Lucas numbers. J. Integer Seq. 17 (2014), Article No. 14.8.3, 12 pages. | MR | JFM

[2] Bugeaud, Y., Laurent, M.: Effective lower bound for the $p$-adic distance between powers of algebraic numbers. J. Number Theory 61 (1996), 311-342 French. | DOI | MR | JFM

[3] Bugeaud, Y., Luca, F., Mignotte, M., Siksek, S.: Almost powers in the Lucas sequence. J. Théor. Nombres Bordx. 20 (2008), 555-600. | DOI | MR | JFM

[4] Castillo, R. C.: On the sum of corresponding factorials and triangular numbers: Some preliminary results. Asia Pac. J. Multidisciplinary Research 3 (2015), 5-11.

[5] Ruiz, C. A. Gómez, Luca, F.: Fibonacci factoriangular numbers. Indag. Math., New Ser. 28 (2017), 796-804. | DOI | MR | JFM

[6] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley-Interscience, New York (2001). | DOI | MR | JFM

[7] Luca, F., Odjoumani, J., Togbé, A.: Pell factoriangular numbers. (to appear) in Publ. Inst. Math. Beograd, N.S. | MR

[8] Ming, L.: On triangular Lucas numbers. Applications of Fibonacci Numbers. Vol. 4. Proc. 4th Int. Conf. on Fibonacci Numbers and Their Applications, Wake Forest University, Winston-Salem, USA, 1990 Kluwer Academic Publishers, Dordrecht (1991), 231-240 G. E. Bergun et al. | DOI | MR | JFM

[9] Robbins, H.: A remark on Stirling's formula. Am. Math. Mon. 62 (1955), 26-29. | DOI | MR | JFM

Cité par Sources :