Lucas factoriangular numbers
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 33-43
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that the only Lucas numbers which are factoriangular are $1$ and $2$.
We show that the only Lucas numbers which are factoriangular are $1$ and $2$.
DOI :
10.21136/MB.2018.0021-18
Classification :
11A25, 11B39, 11J86
Keywords: Lucas number; factoriangular number
Keywords: Lucas number; factoriangular number
@article{10_21136_MB_2018_0021_18,
author = {Kafle, Bir and Luca, Florian and Togb\'e, Alain},
title = {Lucas factoriangular numbers},
journal = {Mathematica Bohemica},
pages = {33--43},
year = {2020},
volume = {145},
number = {1},
doi = {10.21136/MB.2018.0021-18},
mrnumber = {4088691},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0021-18/}
}
TY - JOUR AU - Kafle, Bir AU - Luca, Florian AU - Togbé, Alain TI - Lucas factoriangular numbers JO - Mathematica Bohemica PY - 2020 SP - 33 EP - 43 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0021-18/ DO - 10.21136/MB.2018.0021-18 LA - en ID - 10_21136_MB_2018_0021_18 ER -
Kafle, Bir; Luca, Florian; Togbé, Alain. Lucas factoriangular numbers. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 33-43. doi: 10.21136/MB.2018.0021-18
Cité par Sources :