Oscillation theorems for third order nonlinear delay difference equations
Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 25-37
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form $$ \Delta (a_n(\Delta (b_n(\Delta y_n)^{\alpha })))+q_nf(y_{\sigma (n)})=0 $$ to have property ${(\rm A)}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.
Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form $$ \Delta (a_n(\Delta (b_n(\Delta y_n)^{\alpha })))+q_nf(y_{\sigma (n)})=0 $$ to have property ${(\rm A)}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.
DOI :
10.21136/MB.2018.0019-17
Classification :
39A10
Keywords: third order delay difference equation; property ${(\rm A)}$; comparison theorem
Keywords: third order delay difference equation; property ${(\rm A)}$; comparison theorem
@article{10_21136_MB_2018_0019_17,
author = {Vidhyaa, Kumar S. and Dharuman, Chinnappa and Thandapani, Ethiraju and Pinelas, Sandra},
title = {Oscillation theorems for third order nonlinear delay difference equations},
journal = {Mathematica Bohemica},
pages = {25--37},
year = {2019},
volume = {144},
number = {1},
doi = {10.21136/MB.2018.0019-17},
mrnumber = {3934196},
zbl = {07088834},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0019-17/}
}
TY - JOUR AU - Vidhyaa, Kumar S. AU - Dharuman, Chinnappa AU - Thandapani, Ethiraju AU - Pinelas, Sandra TI - Oscillation theorems for third order nonlinear delay difference equations JO - Mathematica Bohemica PY - 2019 SP - 25 EP - 37 VL - 144 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0019-17/ DO - 10.21136/MB.2018.0019-17 LA - en ID - 10_21136_MB_2018_0019_17 ER -
%0 Journal Article %A Vidhyaa, Kumar S. %A Dharuman, Chinnappa %A Thandapani, Ethiraju %A Pinelas, Sandra %T Oscillation theorems for third order nonlinear delay difference equations %J Mathematica Bohemica %D 2019 %P 25-37 %V 144 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0019-17/ %R 10.21136/MB.2018.0019-17 %G en %F 10_21136_MB_2018_0019_17
Vidhyaa, Kumar S.; Dharuman, Chinnappa; Thandapani, Ethiraju; Pinelas, Sandra. Oscillation theorems for third order nonlinear delay difference equations. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 25-37. doi: 10.21136/MB.2018.0019-17
Cité par Sources :