Oscillation theorems for third order nonlinear delay difference equations
Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 25-37
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form $$ \Delta (a_n(\Delta (b_n(\Delta y_n)^{\alpha })))+q_nf(y_{\sigma (n)})=0 $$ to have property ${(\rm A)}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.
Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form $$ \Delta (a_n(\Delta (b_n(\Delta y_n)^{\alpha })))+q_nf(y_{\sigma (n)})=0 $$ to have property ${(\rm A)}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.
DOI : 10.21136/MB.2018.0019-17
Classification : 39A10
Keywords: third order delay difference equation; property ${(\rm A)}$; comparison theorem
@article{10_21136_MB_2018_0019_17,
     author = {Vidhyaa, Kumar S. and Dharuman, Chinnappa and Thandapani, Ethiraju and Pinelas, Sandra},
     title = {Oscillation theorems for third order nonlinear delay difference equations},
     journal = {Mathematica Bohemica},
     pages = {25--37},
     year = {2019},
     volume = {144},
     number = {1},
     doi = {10.21136/MB.2018.0019-17},
     mrnumber = {3934196},
     zbl = {07088834},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0019-17/}
}
TY  - JOUR
AU  - Vidhyaa, Kumar S.
AU  - Dharuman, Chinnappa
AU  - Thandapani, Ethiraju
AU  - Pinelas, Sandra
TI  - Oscillation theorems for third order nonlinear delay difference equations
JO  - Mathematica Bohemica
PY  - 2019
SP  - 25
EP  - 37
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0019-17/
DO  - 10.21136/MB.2018.0019-17
LA  - en
ID  - 10_21136_MB_2018_0019_17
ER  - 
%0 Journal Article
%A Vidhyaa, Kumar S.
%A Dharuman, Chinnappa
%A Thandapani, Ethiraju
%A Pinelas, Sandra
%T Oscillation theorems for third order nonlinear delay difference equations
%J Mathematica Bohemica
%D 2019
%P 25-37
%V 144
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0019-17/
%R 10.21136/MB.2018.0019-17
%G en
%F 10_21136_MB_2018_0019_17
Vidhyaa, Kumar S.; Dharuman, Chinnappa; Thandapani, Ethiraju; Pinelas, Sandra. Oscillation theorems for third order nonlinear delay difference equations. Mathematica Bohemica, Tome 144 (2019) no. 1, pp. 25-37. doi: 10.21136/MB.2018.0019-17

[1] Agarwal, R. P.: Difference Equations and Inequalities. Theory, Methods and Applications. Pure and Applied Mathematics 228. Marcel Dekker, NewYork (2000). | MR | JFM

[2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory. Hindawi Publishing, New York (2005). | MR | JFM

[3] Agarwal, R. P., Grace, S. R.: Oscillation of certain third-order difference equations. Comput. Math. Appl. 42 (2001), 379-384. | DOI | MR | JFM

[4] Agarwal, R. P., Grace, S. R., O'Regan, D.: On the oscillation of certain third-order difference equations. Adv. Difference Equ. 2005 (2005), 345-367. | DOI | MR | JFM

[5] Alzabut, J., Bolat, Y.: Oscillation criteria for nonlinear higher-order forced functional difference equations. Vietnam J. Math. 43 (2015), 583-594. | DOI | MR | JFM

[6] Artzrouni, M.: Generalized stable population theory. J. Math. Biol. 21 (1985), 363-381. | DOI | MR | JFM

[7] Bolat, Y., Alzabut, J.: On the oscillation of higher-order half-linear delay difference equations. Appl. Math. Inf. Sci. 6 (2012), 423-427. | MR

[8] Bolat, Y., Alzabut, J.: On the oscillation of even-order half-linear functional difference equations with damping term. Int. J. Differ. Equ. 2014 (2014), Article ID 791631, 6 pages. | DOI | MR | JFM

[9] Došlá, Z., Kobza, A.: Global asymptotic properties of third-order difference equations. Comput. Math. Appl. 48 (2004), 191-200. | DOI | MR | JFM

[10] Došlá, Z., Kobza, A.: On third-order linear difference equations involving quasi-differences. Adv. Difference Equ. (2006), Article ID 65652, 13 pages. | DOI | MR | JFM

[11] Grace, S. R., Agarwal, R. P., Graef, J. R.: Oscillation criteria for certain third order nonlinear difference equation. Appl. Anal. Discrete Math. 3 (2009), 27-38. | DOI | MR | JFM

[12] Graef, J. R., Thandapani, E.: Oscillatory and asymptotic behavior of solutions of third order delay difference equations. Funkc. Ekvacioj, Ser. Int. 42 (1999), 355-369. | MR | JFM

[13] Saker, S. H., Alzabut, J. O.: Oscillatory behavior of third order nonlinear difference equations with delayed argument. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 707-723. | MR | JFM

[14] Saker, S. H., Alzabut, J. O., Mukheimer, A.: On the oscillatory behavior for a certain class of third order nonlinear delay difference equations. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 67, 16 pages. | DOI | MR | JFM

[15] Smith, B.: Oscillatory and asymptotic behavior in certain third-order difference equations. Rocky Mt. J. Math. 17 (1987), 597-606. | DOI | MR | JFM

[16] B. Smith, W. E. Taylor, Jr.: Nonlinear third-order difference equation: Oscillatory and asymptotic behavior. Tamkang J. Math. 19 (1988), 91-95. | MR | JFM

[17] Thandapani, E., Pandian, S., Balasubramanian, R. K.: Oscillatory behavior of solutions of third order quasilinear delay difference equations. Stud. Univ. Žilina, Math. Ser. 19 (2005), 65-78. | MR | JFM

[18] Wang, X., Huang, L.: Oscillation for an odd-order delay difference equations with several delays. Int. J. Qual. Theory Differ. Equ. Appl. 2 (2008), 15-23. | JFM

Cité par Sources :