An observation on spaces with a zeroset diagonal
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 15-18
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We say that a space $X$ has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. A space $X$ has a zeroset diagonal if there is a continuous mapping $f\colon X^2 \rightarrow [0,1]$ with $\Delta _X=f^{-1}(0)$, where $\Delta _X=\{(x,x)\colon x\in X\}$. In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most $\mathfrak c$.
We say that a space $X$ has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. A space $X$ has a zeroset diagonal if there is a continuous mapping $f\colon X^2 \rightarrow [0,1]$ with $\Delta _X=f^{-1}(0)$, where $\Delta _X=\{(x,x)\colon x\in X\}$. In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most $\mathfrak c$.
DOI : 10.21136/MB.2018.0016-18
Classification : 54D20, 54E35
Keywords: first countable; discrete countable chain condition; zeroset diagonal; cardinal
@article{10_21136_MB_2018_0016_18,
     author = {Xuan, Wei-Feng},
     title = {An observation on spaces with a zeroset diagonal},
     journal = {Mathematica Bohemica},
     pages = {15--18},
     year = {2020},
     volume = {145},
     number = {1},
     doi = {10.21136/MB.2018.0016-18},
     mrnumber = {4088689},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-18/}
}
TY  - JOUR
AU  - Xuan, Wei-Feng
TI  - An observation on spaces with a zeroset diagonal
JO  - Mathematica Bohemica
PY  - 2020
SP  - 15
EP  - 18
VL  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-18/
DO  - 10.21136/MB.2018.0016-18
LA  - en
ID  - 10_21136_MB_2018_0016_18
ER  - 
%0 Journal Article
%A Xuan, Wei-Feng
%T An observation on spaces with a zeroset diagonal
%J Mathematica Bohemica
%D 2020
%P 15-18
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-18/
%R 10.21136/MB.2018.0016-18
%G en
%F 10_21136_MB_2018_0016_18
Xuan, Wei-Feng. An observation on spaces with a zeroset diagonal. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 15-18. doi: 10.21136/MB.2018.0016-18

[1] Arhangel'skii, A. V., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. | MR | JFM

[2] Buzyakova, R. Z.: Observations on spaces with zeroset or regular $G_\delta$-diagonals. Commentat. Math. Univ. Carol. 46 (2005), 469-473. | MR | JFM

[3] Buzyakova, R. Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals. Topology Appl. 153 (2006), 1696-1698. | DOI | MR | JFM

[4] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). | MR | JFM

[5] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360. | DOI | MR | JFM

[6] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals. Available at (2015). | arXiv | MR

[7] Hodel, R. E.: Cardinal function. I. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. | DOI | MR | JFM

[8] Shakhmatov, D.: No upper bound for cardinalities of Tychonoff c.c.c. spaces with a $G_\delta$-diagonal exists. An answer to J. Ginsburg and R. G. Woods' question. Commentat. Math. Univ. Carol. 25 (1984), 731-746. | MR | JFM

[9] Uspenskij, V. V.: A large $F_{\sigma}$-discrete Fréchet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260. | MR | JFM

[10] Wage, M. L., Fleissner, W. G., Reed, G. M.: Normality versus countable paracompactness in perfect spaces. Bull. Am. Math. Soc. 82 (1976), 635-639. | DOI | MR | JFM

Cité par Sources :