An observation on spaces with a zeroset diagonal
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 15-18
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We say that a space $X$ has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. A space $X$ has a zeroset diagonal if there is a continuous mapping $f\colon X^2 \rightarrow [0,1]$ with $\Delta _X=f^{-1}(0)$, where $\Delta _X=\{(x,x)\colon x\in X\}$. In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most $\mathfrak c$.
DOI :
10.21136/MB.2018.0016-18
Classification :
54D20, 54E35
Keywords: first countable; discrete countable chain condition; zeroset diagonal; cardinal
Keywords: first countable; discrete countable chain condition; zeroset diagonal; cardinal
@article{10_21136_MB_2018_0016_18,
author = {Xuan, Wei-Feng},
title = {An observation on spaces with a zeroset diagonal},
journal = {Mathematica Bohemica},
pages = {15--18},
publisher = {mathdoc},
volume = {145},
number = {1},
year = {2020},
doi = {10.21136/MB.2018.0016-18},
mrnumber = {4088689},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-18/}
}
TY - JOUR AU - Xuan, Wei-Feng TI - An observation on spaces with a zeroset diagonal JO - Mathematica Bohemica PY - 2020 SP - 15 EP - 18 VL - 145 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-18/ DO - 10.21136/MB.2018.0016-18 LA - en ID - 10_21136_MB_2018_0016_18 ER -
Xuan, Wei-Feng. An observation on spaces with a zeroset diagonal. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 15-18. doi: 10.21136/MB.2018.0016-18
Cité par Sources :