Norm continuity of pointwise quasi-continuous mappings
Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 329-335
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a Baire space, $Y$ be a compact Hausdorff space and $\varphi \colon X \to C_p(Y )$ be a quasi-continuous mapping. For a proximal subset $H$ of $Y \times Y$ we will use topological games $\mathcal {G}_1(H)$ and $\mathcal {G}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then $\varphi $ is norm continuous on a dense $G_\delta $ subset of $X$. It follows that if $Y$ is Valdivia compact, each quasi-continuous mapping from a Baire space $X$ to $C_p(Y)$ is norm continuous on a dense $G_\delta $ subset of $X$.
Let $X$ be a Baire space, $Y$ be a compact Hausdorff space and $\varphi \colon X \to C_p(Y )$ be a quasi-continuous mapping. For a proximal subset $H$ of $Y \times Y$ we will use topological games $\mathcal {G}_1(H)$ and $\mathcal {G}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then $\varphi $ is norm continuous on a dense $G_\delta $ subset of $X$. It follows that if $Y$ is Valdivia compact, each quasi-continuous mapping from a Baire space $X$ to $C_p(Y)$ is norm continuous on a dense $G_\delta $ subset of $X$.
DOI : 10.21136/MB.2018.0016-17
Classification : 54C05, 54C08, 54C35
Keywords: function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology
@article{10_21136_MB_2018_0016_17,
     author = {Mirmostafaee, Alireza Kamel},
     title = {Norm continuity of pointwise quasi-continuous mappings},
     journal = {Mathematica Bohemica},
     pages = {329--335},
     year = {2018},
     volume = {143},
     number = {3},
     doi = {10.21136/MB.2018.0016-17},
     mrnumber = {3852297},
     zbl = {06940886},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-17/}
}
TY  - JOUR
AU  - Mirmostafaee, Alireza Kamel
TI  - Norm continuity of pointwise quasi-continuous mappings
JO  - Mathematica Bohemica
PY  - 2018
SP  - 329
EP  - 335
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-17/
DO  - 10.21136/MB.2018.0016-17
LA  - en
ID  - 10_21136_MB_2018_0016_17
ER  - 
%0 Journal Article
%A Mirmostafaee, Alireza Kamel
%T Norm continuity of pointwise quasi-continuous mappings
%J Mathematica Bohemica
%D 2018
%P 329-335
%V 143
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0016-17/
%R 10.21136/MB.2018.0016-17
%G en
%F 10_21136_MB_2018_0016_17
Mirmostafaee, Alireza Kamel. Norm continuity of pointwise quasi-continuous mappings. Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 329-335. doi: 10.21136/MB.2018.0016-17

[1] Angosto, C., Cascales, B., Namioka, I.: Distances to spaces of Baire one functions. Math. Z. 263 (2009), 103-124. | DOI | MR | JFM

[2] Bouziad, A.: L'espace de Helly a la propriété de Namioka. C. R. Acad. Sci., Paris, Sér. I 317 (1993), 841-843 French. | MR | JFM

[3] Bouziad, A.: Every Čech-analytic Baire semitopological group is a topological group. Proc. Am. Math. Soc. 124 (1996), 953-959. | DOI | MR | JFM

[4] Choquet, G.: Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces. Mathematics Lecture Note Series. W. A. Benjamin Inc., New-York (1969). | MR | JFM

[5] Christensen, J. P. R.: Joint continuity of separately continuous functions. Proc. Am. Math. Soc. 82 (1981), 455-461. | DOI | MR | JFM

[6] Debs, G.: Pointwise and uniform convergence on a Corson compact space. Topology Appl. 23 (1986), 299-303. | DOI | MR | JFM

[7] Deville, R.: Point convergence and uniform convergence on a compact space. Bull. Pol. Acad. Sci., Math. 37 (1989), 507-515 French. | MR | JFM

[8] Deville, R., Godefroy, G.: Some applications of projective resolutions of identity. Proc. Lond. Math. Soc., III. Ser. 67 (1993), 183-199. | DOI | MR | JFM

[9] Hansel, G., Troallic, J.-P.: Quasicontinuity and Namioka's theorem. Topology Appl. 46 (1992), 135-149. | DOI | MR | JFM

[10] Haydon, R.: Baire trees, bad norms and the Namioka property. Mathematika 42 (1995), 30-42. | DOI | MR | JFM

[11] Kenderov, P. S., Kortezov, I. S., Moors, W. B.: Norm continuity of weakly continuous mappings into Banach spaces. Topology Appl. 153 (2006), 2745-2759. | DOI | MR | JFM

[12] Mirmostafaee, A. K.: Norm continuity of quasi-continuous mappings into {$C_p(X)$} and product spaces. Topology Appl. 157 (2010), 530-535. | DOI | MR | JFM

[13] Mirmostafaee, A. K.: Quasi-continuity of horizontally quasi-continuous functions. Real Anal. Exch. 39 (2013-2014), 335-344. | DOI | MR | JFM

[14] Mirmostafaee, A. K.: Continuity of separately continuous mappings. Math. Slovaca 64 (2014), 1019-1026. | DOI | MR | JFM

[15] Namioka, I.: Separate continuity and joint continuity. Pac. J. Math. 51 (1974), 515-531. | DOI | MR | JFM

[16] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics 2. Springer, New York (1971). | DOI | MR | JFM

[17] Talagrand, M.: Espaces de Baire et espaces de Namioka. Math. Ann. 270 (1985), 159-164 French. | DOI | MR | JFM

Cité par Sources :