Fermat $k$-Fibonacci and $k$-Lucas numbers
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 19-32.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.
DOI : 10.21136/MB.2018.0015-18
Classification : 11B39, 11J86
Keywords: generalized Fibonacci number; Fermat number, linear form in logarithms; reduction method
@article{10_21136_MB_2018_0015_18,
     author = {Bravo, Jhon J. and Herrera, Jose L.},
     title = {Fermat $k${-Fibonacci} and $k${-Lucas} numbers},
     journal = {Mathematica Bohemica},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2020},
     doi = {10.21136/MB.2018.0015-18},
     mrnumber = {4088690},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/}
}
TY  - JOUR
AU  - Bravo, Jhon J.
AU  - Herrera, Jose L.
TI  - Fermat $k$-Fibonacci and $k$-Lucas numbers
JO  - Mathematica Bohemica
PY  - 2020
SP  - 19
EP  - 32
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/
DO  - 10.21136/MB.2018.0015-18
LA  - en
ID  - 10_21136_MB_2018_0015_18
ER  - 
%0 Journal Article
%A Bravo, Jhon J.
%A Herrera, Jose L.
%T Fermat $k$-Fibonacci and $k$-Lucas numbers
%J Mathematica Bohemica
%D 2020
%P 19-32
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/
%R 10.21136/MB.2018.0015-18
%G en
%F 10_21136_MB_2018_0015_18
Bravo, Jhon J.; Herrera, Jose L. Fermat $k$-Fibonacci and $k$-Lucas numbers. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 19-32. doi : 10.21136/MB.2018.0015-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/

Cité par Sources :