Fermat $k$-Fibonacci and $k$-Lucas numbers
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 19-32
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.
DOI :
10.21136/MB.2018.0015-18
Classification :
11B39, 11J86
Keywords: generalized Fibonacci number; Fermat number, linear form in logarithms; reduction method
Keywords: generalized Fibonacci number; Fermat number, linear form in logarithms; reduction method
@article{10_21136_MB_2018_0015_18,
author = {Bravo, Jhon J. and Herrera, Jose L.},
title = {Fermat $k${-Fibonacci} and $k${-Lucas} numbers},
journal = {Mathematica Bohemica},
pages = {19--32},
publisher = {mathdoc},
volume = {145},
number = {1},
year = {2020},
doi = {10.21136/MB.2018.0015-18},
mrnumber = {4088690},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/}
}
TY - JOUR AU - Bravo, Jhon J. AU - Herrera, Jose L. TI - Fermat $k$-Fibonacci and $k$-Lucas numbers JO - Mathematica Bohemica PY - 2020 SP - 19 EP - 32 VL - 145 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/ DO - 10.21136/MB.2018.0015-18 LA - en ID - 10_21136_MB_2018_0015_18 ER -
Bravo, Jhon J.; Herrera, Jose L. Fermat $k$-Fibonacci and $k$-Lucas numbers. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 19-32. doi: 10.21136/MB.2018.0015-18
Cité par Sources :