Keywords: generalized Fibonacci number; Fermat number, linear form in logarithms; reduction method
@article{10_21136_MB_2018_0015_18,
author = {Bravo, Jhon J. and Herrera, Jose L.},
title = {Fermat $k${-Fibonacci} and $k${-Lucas} numbers},
journal = {Mathematica Bohemica},
pages = {19--32},
year = {2020},
volume = {145},
number = {1},
doi = {10.21136/MB.2018.0015-18},
mrnumber = {4088690},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/}
}
TY - JOUR AU - Bravo, Jhon J. AU - Herrera, Jose L. TI - Fermat $k$-Fibonacci and $k$-Lucas numbers JO - Mathematica Bohemica PY - 2020 SP - 19 EP - 32 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0015-18/ DO - 10.21136/MB.2018.0015-18 LA - en ID - 10_21136_MB_2018_0015_18 ER -
Bravo, Jhon J.; Herrera, Jose L. Fermat $k$-Fibonacci and $k$-Lucas numbers. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 19-32. doi: 10.21136/MB.2018.0015-18
[1] Bravo, E. F., Bravo, J. J., Luca, F.: Coincidences in generalized Lucas sequences. Fibonacci Q. 52 (2014), 296-306. | MR | JFM
[2] Bravo, J. J., Gómez, C. A., Luca, F.: Powers of two as sums of two $k$-Fibonacci numbers. Miskolc Math. Notes 17 (2016), 85-100. | DOI | MR | JFM
[3] Bravo, J. J., Luca, F.: Powers of two in generalized Fibonacci sequences. Rev. Colomb. Mat. 46 (2012), 67-79. | MR | JFM
[4] Bravo, J. J., Luca, F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences. Publ. Math. 82 (2013), 623-639. | DOI | MR | JFM
[5] Bravo, J. J., Luca, F.: Repdigits in $k$-Lucas sequences. Proc. Indian Acad. Sci., Math. Sci. 124 (2014), 141-154. | DOI | MR | JFM
[6] Dresden, G. P., Du, Z.: A simplified Binet formula for $k$-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. | MR | JFM
[7] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math., Oxf. II. Ser. 49 (1998), 291-306. | DOI | MR | JFM
[8] Finkelstein, R.: On Fibonacci numbers which are more than a square. J. Reine Angew. Math. 262/263 (1973), 171-178. | DOI | MR | JFM
[9] Finkelstein, R.: On Lucas numbers which are one more than a square. Fibonacci Q. 136 (1975), 340-342. | MR | JFM
[10] Hua, L. K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin; Science Press, Beijing (1981). | MR | JFM
[11] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2000), 243-254. | MR | JFM
[12] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23-31. | MR | JFM
[13] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II. Izv. Math. 64 (2000), 1217-1269 translated from Izv. Ross. Akad. Nauk Ser. Mat. 64 2000 125-180. | DOI | MR | JFM
[14] Noe, T. D., Post, J. Vos: Primes in Fibonacci $n$-step and Lucas $n$-step sequences. J. Integer Seq. 8 (2005), Article No. 05.4.4, 12 pages. | MR | JFM
[15] Wolfram, D. A.: Solving generalized Fibonacci recurrences. Fibonacci Q. 36 (1998), 129-145. | MR | JFM
Cité par Sources :