Common fixed points for four non-self mappings in partial metric spaces
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 45-63
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.
We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.
DOI : 10.21136/MB.2018.0008-18
Classification : 47H10, 54H25
Keywords: common fixed point; convex partial metric space; non-self mapping
@article{10_21136_MB_2018_0008_18,
     author = {Rugumisa, Terentius and Kumar, Santosh and Imdad, Mohammad},
     title = {Common fixed points for four non-self mappings in partial metric spaces},
     journal = {Mathematica Bohemica},
     pages = {45--63},
     year = {2020},
     volume = {145},
     number = {1},
     doi = {10.21136/MB.2018.0008-18},
     mrnumber = {4088692},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/}
}
TY  - JOUR
AU  - Rugumisa, Terentius
AU  - Kumar, Santosh
AU  - Imdad, Mohammad
TI  - Common fixed points for four non-self mappings in partial metric spaces
JO  - Mathematica Bohemica
PY  - 2020
SP  - 45
EP  - 63
VL  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/
DO  - 10.21136/MB.2018.0008-18
LA  - en
ID  - 10_21136_MB_2018_0008_18
ER  - 
%0 Journal Article
%A Rugumisa, Terentius
%A Kumar, Santosh
%A Imdad, Mohammad
%T Common fixed points for four non-self mappings in partial metric spaces
%J Mathematica Bohemica
%D 2020
%P 45-63
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/
%R 10.21136/MB.2018.0008-18
%G en
%F 10_21136_MB_2018_0008_18
Rugumisa, Terentius; Kumar, Santosh; Imdad, Mohammad. Common fixed points for four non-self mappings in partial metric spaces. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 45-63. doi: 10.21136/MB.2018.0008-18

[1] Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116 (2009), 708-718. | DOI | MR | JFM

[2] 'Cirić, L. B.: Contractive type non-self mappings on metric spaces of hyperbolic type. J. Math. Anal. Appl. 317 (2006), 28-42. | DOI | MR | JFM

[3] Ćirić, L. B., Ume, J. S., Khan, M. S., Pathak, H. K.: On some nonself mappings. Math. Nachr. 251 (2003), 28-33. | DOI | MR | JFM

[4] Das, K. M., Naik, K. Viswanatha: Common fixed point theorems for commuting maps on a metric space. Proc. Am. Math. Soc. 77 (1979), 369-373. | DOI | MR | JFM

[5] Gajić, L., Rakočević, V.: Pair of non-self-mappings and common fixed points. Appl. Math. Comput. 187 (2007), 999-1006. | DOI | MR | JFM

[6] Imdad, M., Kumar, S.: Rhoades-type fixed-point theorems for a pair of nonself mappings. Comput. Math. Appl. 46 (2003), 919-927. | DOI | MR | JFM

[7] Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83 (1976), 261-263. | DOI | MR | JFM

[8] Matthews, S. G.: Partial metric topology. Papers on General Topology and Applications. 8th Summer Conf. Queens College, New York, 1992 Ann. N.Y. Acad. Sci. 728. The New York Academy of Sciences, New York (1994), 183-197 S. Andima et al. | DOI | MR | JFM

[9] Taki-Eddine, O., Aliouche, A.: Fixed point theorems in convex partial metric spaces. Konuralp J. Math. 2 (2014), 96-101. | JFM

Cité par Sources :