Keywords: common fixed point; convex partial metric space; non-self mapping
@article{10_21136_MB_2018_0008_18,
author = {Rugumisa, Terentius and Kumar, Santosh and Imdad, Mohammad},
title = {Common fixed points for four non-self mappings in partial metric spaces},
journal = {Mathematica Bohemica},
pages = {45--63},
year = {2020},
volume = {145},
number = {1},
doi = {10.21136/MB.2018.0008-18},
mrnumber = {4088692},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/}
}
TY - JOUR AU - Rugumisa, Terentius AU - Kumar, Santosh AU - Imdad, Mohammad TI - Common fixed points for four non-self mappings in partial metric spaces JO - Mathematica Bohemica PY - 2020 SP - 45 EP - 63 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/ DO - 10.21136/MB.2018.0008-18 LA - en ID - 10_21136_MB_2018_0008_18 ER -
%0 Journal Article %A Rugumisa, Terentius %A Kumar, Santosh %A Imdad, Mohammad %T Common fixed points for four non-self mappings in partial metric spaces %J Mathematica Bohemica %D 2020 %P 45-63 %V 145 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/ %R 10.21136/MB.2018.0008-18 %G en %F 10_21136_MB_2018_0008_18
Rugumisa, Terentius; Kumar, Santosh; Imdad, Mohammad. Common fixed points for four non-self mappings in partial metric spaces. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 45-63. doi: 10.21136/MB.2018.0008-18
[1] Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116 (2009), 708-718. | DOI | MR | JFM
[2] 'Cirić, L. B.: Contractive type non-self mappings on metric spaces of hyperbolic type. J. Math. Anal. Appl. 317 (2006), 28-42. | DOI | MR | JFM
[3] Ćirić, L. B., Ume, J. S., Khan, M. S., Pathak, H. K.: On some nonself mappings. Math. Nachr. 251 (2003), 28-33. | DOI | MR | JFM
[4] Das, K. M., Naik, K. Viswanatha: Common fixed point theorems for commuting maps on a metric space. Proc. Am. Math. Soc. 77 (1979), 369-373. | DOI | MR | JFM
[5] Gajić, L., Rakočević, V.: Pair of non-self-mappings and common fixed points. Appl. Math. Comput. 187 (2007), 999-1006. | DOI | MR | JFM
[6] Imdad, M., Kumar, S.: Rhoades-type fixed-point theorems for a pair of nonself mappings. Comput. Math. Appl. 46 (2003), 919-927. | DOI | MR | JFM
[7] Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83 (1976), 261-263. | DOI | MR | JFM
[8] Matthews, S. G.: Partial metric topology. Papers on General Topology and Applications. 8th Summer Conf. Queens College, New York, 1992 Ann. N.Y. Acad. Sci. 728. The New York Academy of Sciences, New York (1994), 183-197 S. Andima et al. | DOI | MR | JFM
[9] Taki-Eddine, O., Aliouche, A.: Fixed point theorems in convex partial metric spaces. Konuralp J. Math. 2 (2014), 96-101. | JFM
Cité par Sources :