Common fixed points for four non-self mappings in partial metric spaces
Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 45-63.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.
DOI : 10.21136/MB.2018.0008-18
Classification : 47H10, 54H25
Keywords: common fixed point; convex partial metric space; non-self mapping
@article{10_21136_MB_2018_0008_18,
     author = {Rugumisa, Terentius and Kumar, Santosh and Imdad, Mohammad},
     title = {Common fixed points for four non-self mappings in partial metric spaces},
     journal = {Mathematica Bohemica},
     pages = {45--63},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2020},
     doi = {10.21136/MB.2018.0008-18},
     mrnumber = {4088692},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/}
}
TY  - JOUR
AU  - Rugumisa, Terentius
AU  - Kumar, Santosh
AU  - Imdad, Mohammad
TI  - Common fixed points for four non-self mappings in partial metric spaces
JO  - Mathematica Bohemica
PY  - 2020
SP  - 45
EP  - 63
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/
DO  - 10.21136/MB.2018.0008-18
LA  - en
ID  - 10_21136_MB_2018_0008_18
ER  - 
%0 Journal Article
%A Rugumisa, Terentius
%A Kumar, Santosh
%A Imdad, Mohammad
%T Common fixed points for four non-self mappings in partial metric spaces
%J Mathematica Bohemica
%D 2020
%P 45-63
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/
%R 10.21136/MB.2018.0008-18
%G en
%F 10_21136_MB_2018_0008_18
Rugumisa, Terentius; Kumar, Santosh; Imdad, Mohammad. Common fixed points for four non-self mappings in partial metric spaces. Mathematica Bohemica, Tome 145 (2020) no. 1, pp. 45-63. doi : 10.21136/MB.2018.0008-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0008-18/

Cité par Sources :