Keywords: Hilbert space; normal operator; equivalent metrics; composition operator
@article{10_21136_MB_2017_0101_16,
author = {Jabbarzadeh, Mohammad Reza and Hajipouri, Rana},
title = {Some equivalent metrics for bounded normal operators},
journal = {Mathematica Bohemica},
pages = {201--212},
year = {2018},
volume = {143},
number = {2},
doi = {10.21136/MB.2017.0101-16},
mrnumber = {3831487},
zbl = {06890415},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0101-16/}
}
TY - JOUR AU - Jabbarzadeh, Mohammad Reza AU - Hajipouri, Rana TI - Some equivalent metrics for bounded normal operators JO - Mathematica Bohemica PY - 2018 SP - 201 EP - 212 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0101-16/ DO - 10.21136/MB.2017.0101-16 LA - en ID - 10_21136_MB_2017_0101_16 ER -
%0 Journal Article %A Jabbarzadeh, Mohammad Reza %A Hajipouri, Rana %T Some equivalent metrics for bounded normal operators %J Mathematica Bohemica %D 2018 %P 201-212 %V 143 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0101-16/ %R 10.21136/MB.2017.0101-16 %G en %F 10_21136_MB_2017_0101_16
Jabbarzadeh, Mohammad Reza; Hajipouri, Rana. Some equivalent metrics for bounded normal operators. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 201-212. doi: 10.21136/MB.2017.0101-16
[1] Benharrat, M., Messirdi, B.: Strong metrizability for closed operators and the semi-Fredholm operators between two Hilbert spaces. Int. J. Anal. Appl. 8 (2015), 110-122.
[2] Cordes, H. O., Labrousse, J. P.: The invariance of the index in the metric space of closed operators. J. Math. Mech. 12 (1963), 693-719. | MR | JFM
[3] Gilfeather, F.: Norm conditions on resolvents of similarities of Hilbert space operators and applications to direct sums and integrals of operators. Proc. Am. Math. Soc. 68 (1978), 44-48. | DOI | MR | JFM
[4] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1976). | DOI | MR | JFM
[5] Kaufman, W. E.: A stronger metric for closed operators in Hilbert space. Proc. Am. Math. Soc. 90 (1984), 83-87. | DOI | MR | JFM
[6] Kittaneh, F.: On some equivalent metrics for bounded operators on Hilbert space. Proc. Am. Math. Soc. 110 (1990), 789-798. | DOI | MR | JFM
[7] Labrousse, J. P.: On a metric space of closed operators on a Hilbert space. Univ. Nac. Tucumán, Rev., Ser. A 16 (1966), 45-77. | MR | JFM
[8] Labrousse, J. P.: Quelques topologies sur des espaces d'opérateurs dans des espaces de Hilbert et leurs applications. Faculté des Sciences de Nice (Math.) 1 (1970), 47 pages.
[9] Lambert, A., Petrovic, S.: Beyond hyperinvariance for compact operators. J. Funct. Anal. 219 (2005), 93-108. | DOI | MR | JFM
[10] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179. North-Holland, Amsterdam (1993). | MR | JFM
Cité par Sources :