Some equivalent metrics for bounded normal operators
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 201-212
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some stronger and equivalent metrics are defined on $\mathcal {M}$, the set of all bounded normal operators on a Hilbert space $H$ and then some topological properties of $\mathcal {M}$ are investigated.
Some stronger and equivalent metrics are defined on $\mathcal {M}$, the set of all bounded normal operators on a Hilbert space $H$ and then some topological properties of $\mathcal {M}$ are investigated.
DOI : 10.21136/MB.2017.0101-16
Classification : 47A05
Keywords: Hilbert space; normal operator; equivalent metrics; composition operator
@article{10_21136_MB_2017_0101_16,
     author = {Jabbarzadeh, Mohammad Reza and Hajipouri, Rana},
     title = {Some equivalent metrics for bounded normal operators},
     journal = {Mathematica Bohemica},
     pages = {201--212},
     year = {2018},
     volume = {143},
     number = {2},
     doi = {10.21136/MB.2017.0101-16},
     mrnumber = {3831487},
     zbl = {06890415},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0101-16/}
}
TY  - JOUR
AU  - Jabbarzadeh, Mohammad Reza
AU  - Hajipouri, Rana
TI  - Some equivalent metrics for bounded normal operators
JO  - Mathematica Bohemica
PY  - 2018
SP  - 201
EP  - 212
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0101-16/
DO  - 10.21136/MB.2017.0101-16
LA  - en
ID  - 10_21136_MB_2017_0101_16
ER  - 
%0 Journal Article
%A Jabbarzadeh, Mohammad Reza
%A Hajipouri, Rana
%T Some equivalent metrics for bounded normal operators
%J Mathematica Bohemica
%D 2018
%P 201-212
%V 143
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0101-16/
%R 10.21136/MB.2017.0101-16
%G en
%F 10_21136_MB_2017_0101_16
Jabbarzadeh, Mohammad Reza; Hajipouri, Rana. Some equivalent metrics for bounded normal operators. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 201-212. doi: 10.21136/MB.2017.0101-16

[1] Benharrat, M., Messirdi, B.: Strong metrizability for closed operators and the semi-Fredholm operators between two Hilbert spaces. Int. J. Anal. Appl. 8 (2015), 110-122.

[2] Cordes, H. O., Labrousse, J. P.: The invariance of the index in the metric space of closed operators. J. Math. Mech. 12 (1963), 693-719. | MR | JFM

[3] Gilfeather, F.: Norm conditions on resolvents of similarities of Hilbert space operators and applications to direct sums and integrals of operators. Proc. Am. Math. Soc. 68 (1978), 44-48. | DOI | MR | JFM

[4] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1976). | DOI | MR | JFM

[5] Kaufman, W. E.: A stronger metric for closed operators in Hilbert space. Proc. Am. Math. Soc. 90 (1984), 83-87. | DOI | MR | JFM

[6] Kittaneh, F.: On some equivalent metrics for bounded operators on Hilbert space. Proc. Am. Math. Soc. 110 (1990), 789-798. | DOI | MR | JFM

[7] Labrousse, J. P.: On a metric space of closed operators on a Hilbert space. Univ. Nac. Tucumán, Rev., Ser. A 16 (1966), 45-77. | MR | JFM

[8] Labrousse, J. P.: Quelques topologies sur des espaces d'opérateurs dans des espaces de Hilbert et leurs applications. Faculté des Sciences de Nice (Math.) 1 (1970), 47 pages.

[9] Lambert, A., Petrovic, S.: Beyond hyperinvariance for compact operators. J. Funct. Anal. 219 (2005), 93-108. | DOI | MR | JFM

[10] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179. North-Holland, Amsterdam (1993). | MR | JFM

Cité par Sources :