Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove the existence of solutions to nonlinear parabolic problems of the following type: $$ \begin {cases} \dfrac {\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u)) \text {in}\ Q,\\ u(x; t) = 0 \text {on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) \text {on}\ \Omega , \end {cases} $$ where $b\colon \Bbb {R}\to \Bbb {R}$ is a strictly increasing function of class ${\mathcal C}^1$, the term $$ A(u) = -{\rm div} (a(x, t, u,\nabla u)) $$ is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \Bbb {R}\to \Bbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$.
DOI : 10.21136/MB.2017.0087-16
Classification : 58J35, 65L60
Keywords: inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
@article{10_21136_MB_2017_0087_16,
     author = {Elemine Vall, Mohamed Saad Bouh and Ahmed, Ahmed and Touzani, Abdelfattah and Benkirane, Abdelmoujib},
     title = {Entropy solutions to parabolic equations in {Musielak} framework involving non coercivity term in divergence form},
     journal = {Mathematica Bohemica},
     pages = {225--249},
     publisher = {mathdoc},
     volume = {143},
     number = {3},
     year = {2018},
     doi = {10.21136/MB.2017.0087-16},
     mrnumber = {3852293},
     zbl = {06940882},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/}
}
TY  - JOUR
AU  - Elemine Vall, Mohamed Saad Bouh
AU  - Ahmed, Ahmed
AU  - Touzani, Abdelfattah
AU  - Benkirane, Abdelmoujib
TI  - Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
JO  - Mathematica Bohemica
PY  - 2018
SP  - 225
EP  - 249
VL  - 143
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/
DO  - 10.21136/MB.2017.0087-16
LA  - en
ID  - 10_21136_MB_2017_0087_16
ER  - 
%0 Journal Article
%A Elemine Vall, Mohamed Saad Bouh
%A Ahmed, Ahmed
%A Touzani, Abdelfattah
%A Benkirane, Abdelmoujib
%T Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
%J Mathematica Bohemica
%D 2018
%P 225-249
%V 143
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/
%R 10.21136/MB.2017.0087-16
%G en
%F 10_21136_MB_2017_0087_16
Elemine Vall, Mohamed Saad Bouh; Ahmed, Ahmed; Touzani, Abdelfattah; Benkirane, Abdelmoujib. Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form. Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249. doi : 10.21136/MB.2017.0087-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/

Cité par Sources :