Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove the existence of solutions to nonlinear parabolic problems of the following type: $$ \begin {cases} \dfrac {\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u)) \text {in}\ Q,\\ u(x; t) = 0 \text {on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) \text {on}\ \Omega , \end {cases} $$ where $b\colon \Bbb {R}\to \Bbb {R}$ is a strictly increasing function of class ${\mathcal C}^1$, the term $$ A(u) = -{\rm div} (a(x, t, u,\nabla u)) $$ is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \Bbb {R}\to \Bbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$.
DOI :
10.21136/MB.2017.0087-16
Classification :
58J35, 65L60
Keywords: inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
Keywords: inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
@article{10_21136_MB_2017_0087_16,
author = {Elemine Vall, Mohamed Saad Bouh and Ahmed, Ahmed and Touzani, Abdelfattah and Benkirane, Abdelmoujib},
title = {Entropy solutions to parabolic equations in {Musielak} framework involving non coercivity term in divergence form},
journal = {Mathematica Bohemica},
pages = {225--249},
publisher = {mathdoc},
volume = {143},
number = {3},
year = {2018},
doi = {10.21136/MB.2017.0087-16},
mrnumber = {3852293},
zbl = {06940882},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/}
}
TY - JOUR AU - Elemine Vall, Mohamed Saad Bouh AU - Ahmed, Ahmed AU - Touzani, Abdelfattah AU - Benkirane, Abdelmoujib TI - Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form JO - Mathematica Bohemica PY - 2018 SP - 225 EP - 249 VL - 143 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/ DO - 10.21136/MB.2017.0087-16 LA - en ID - 10_21136_MB_2017_0087_16 ER -
%0 Journal Article %A Elemine Vall, Mohamed Saad Bouh %A Ahmed, Ahmed %A Touzani, Abdelfattah %A Benkirane, Abdelmoujib %T Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form %J Mathematica Bohemica %D 2018 %P 225-249 %V 143 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/ %R 10.21136/MB.2017.0087-16 %G en %F 10_21136_MB_2017_0087_16
Elemine Vall, Mohamed Saad Bouh; Ahmed, Ahmed; Touzani, Abdelfattah; Benkirane, Abdelmoujib. Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form. Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249. doi: 10.21136/MB.2017.0087-16
Cité par Sources :