Keywords: inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
@article{10_21136_MB_2017_0087_16,
author = {Elemine Vall, Mohamed Saad Bouh and Ahmed, Ahmed and Touzani, Abdelfattah and Benkirane, Abdelmoujib},
title = {Entropy solutions to parabolic equations in {Musielak} framework involving non coercivity term in divergence form},
journal = {Mathematica Bohemica},
pages = {225--249},
year = {2018},
volume = {143},
number = {3},
doi = {10.21136/MB.2017.0087-16},
mrnumber = {3852293},
zbl = {06940882},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/}
}
TY - JOUR AU - Elemine Vall, Mohamed Saad Bouh AU - Ahmed, Ahmed AU - Touzani, Abdelfattah AU - Benkirane, Abdelmoujib TI - Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form JO - Mathematica Bohemica PY - 2018 SP - 225 EP - 249 VL - 143 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/ DO - 10.21136/MB.2017.0087-16 LA - en ID - 10_21136_MB_2017_0087_16 ER -
%0 Journal Article %A Elemine Vall, Mohamed Saad Bouh %A Ahmed, Ahmed %A Touzani, Abdelfattah %A Benkirane, Abdelmoujib %T Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form %J Mathematica Bohemica %D 2018 %P 225-249 %V 143 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/ %R 10.21136/MB.2017.0087-16 %G en %F 10_21136_MB_2017_0087_16
Elemine Vall, Mohamed Saad Bouh; Ahmed, Ahmed; Touzani, Abdelfattah; Benkirane, Abdelmoujib. Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form. Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249. doi: 10.21136/MB.2017.0087-16
[1] Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Existence results for a nonlinear parabolic problems with lower order terms. Int. J. Math. Anal., Ruse 7 (2013), 1323-1340. | DOI | MR | JFM
[2] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces. J. Abstr. Differ. Equ. Appl. 4 (2013), 43-57. | MR | JFM
[3] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Parabolic equations in Musielak-Orlicz-Sobolev spaces. Int. J. Anal. Appl. 4 (2014), 174-191. | MR | JFM
[4] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces. Bol. Soc. Paran. Mat. (3) 33 (2015), 193-223. | MR
[5] Khellou, M. Ait, Benkirane, A., Douiri, S. M.: Existance of solutions for elliptic equations having naturel growth terms in Musielak-Orlicz spaces. J. Math. Comput. Sci. 4 (2014), 665-688.
[6] Azroul, E., Benboubker, M. B., Redwane, H., Yazough, C.: Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth. An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 69-87. | MR | JFM
[7] Azroul, E., Lekhlifi, M. El, Redwane, H., Touzani, A.: Entropy solutions of nonlinear parabolic equations in Orlicz-Sobolev spaces, without sign condition and $L^1$ data. J. Nonlinear Evol. Equ. Appl. 2014 (2014), 101-130. | MR | JFM
[8] Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations. Electron. J. Differ. Equ. 2013 (2013), Paper No. 68, 27 pages. | MR | JFM
[9] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. | MR | JFM
[10] Benkirane, A., Val, M. Ould Mohamedhen: Some approximation properties in Musielak-Orlicz-Sobolev spaces. Thai. J. Math. 10 (2012), 371-381. | MR | JFM
[11] Benkirane, A., Vally, M. Sidi El: Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc.-Simon Stevin 21 (2014), 787-811. | DOI | MR | JFM
[12] Vall, M. S. B. Elemine, Ahmed, A., Touzani, A., Benkirane, A.: Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data. Bol. Soc. Paran. Math. (3) 36 (2018), 125-150. | DOI | MR
[13] Elmahi, A., Meskine, D.: Parabolic equations in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 72 (2005), 410-428. | DOI | MR | JFM
[14] Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 1-35. | DOI | MR | JFM
[15] Gossez, J. P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190 (1974), 163-205. | DOI | MR | JFM
[16] Nassar, S. Hadj, Moussa, H., Rhoudaf, M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249 (2014), 253-264. | DOI | MR | JFM
[17] Landes, R., Mustonen, V.: A strongly nonlinear parabolic initial boundary value problem. Ark. Mat. 25 (1987), 29-40. | DOI | MR | JFM
[18] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer, Berlin (1983). | DOI | MR | JFM
[19] Redwane, H.: Existence of a solution for a class of parabolic equations with three unbounded nonlinearities. Adv. Dyn. Syst. Appl. 2 (2007), 241-264. | MR
[20] Redwane, H.: Existence results for a class of nonlinear parabolic equations in Orlicz spaces. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 2, 19 pages. | DOI | MR | JFM
[21] Vally, M. Sidi El: Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces. Adv. Dyn. Syst. Appl. 8 (2013), 115-124. | MR
Cité par Sources :