Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the existence of solutions to nonlinear parabolic problems of the following type: $$ \begin {cases} \dfrac {\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u)) \text {in}\ Q,\\ u(x; t) = 0 \text {on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) \text {on}\ \Omega , \end {cases} $$ where $b\colon \Bbb {R}\to \Bbb {R}$ is a strictly increasing function of class ${\mathcal C}^1$, the term $$ A(u) = -{\rm div} (a(x, t, u,\nabla u)) $$ is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \Bbb {R}\to \Bbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$.
We prove the existence of solutions to nonlinear parabolic problems of the following type: $$ \begin {cases} \dfrac {\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u)) \text {in}\ Q,\\ u(x; t) = 0 \text {on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) \text {on}\ \Omega , \end {cases} $$ where $b\colon \Bbb {R}\to \Bbb {R}$ is a strictly increasing function of class ${\mathcal C}^1$, the term $$ A(u) = -{\rm div} (a(x, t, u,\nabla u)) $$ is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \Bbb {R}\to \Bbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$.
DOI : 10.21136/MB.2017.0087-16
Classification : 58J35, 65L60
Keywords: inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
@article{10_21136_MB_2017_0087_16,
     author = {Elemine Vall, Mohamed Saad Bouh and Ahmed, Ahmed and Touzani, Abdelfattah and Benkirane, Abdelmoujib},
     title = {Entropy solutions to parabolic equations in {Musielak} framework involving non coercivity term in divergence form},
     journal = {Mathematica Bohemica},
     pages = {225--249},
     year = {2018},
     volume = {143},
     number = {3},
     doi = {10.21136/MB.2017.0087-16},
     mrnumber = {3852293},
     zbl = {06940882},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/}
}
TY  - JOUR
AU  - Elemine Vall, Mohamed Saad Bouh
AU  - Ahmed, Ahmed
AU  - Touzani, Abdelfattah
AU  - Benkirane, Abdelmoujib
TI  - Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
JO  - Mathematica Bohemica
PY  - 2018
SP  - 225
EP  - 249
VL  - 143
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/
DO  - 10.21136/MB.2017.0087-16
LA  - en
ID  - 10_21136_MB_2017_0087_16
ER  - 
%0 Journal Article
%A Elemine Vall, Mohamed Saad Bouh
%A Ahmed, Ahmed
%A Touzani, Abdelfattah
%A Benkirane, Abdelmoujib
%T Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form
%J Mathematica Bohemica
%D 2018
%P 225-249
%V 143
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0087-16/
%R 10.21136/MB.2017.0087-16
%G en
%F 10_21136_MB_2017_0087_16
Elemine Vall, Mohamed Saad Bouh; Ahmed, Ahmed; Touzani, Abdelfattah; Benkirane, Abdelmoujib. Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form. Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 225-249. doi: 10.21136/MB.2017.0087-16

[1] Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Existence results for a nonlinear parabolic problems with lower order terms. Int. J. Math. Anal., Ruse 7 (2013), 1323-1340. | DOI | MR | JFM

[2] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces. J. Abstr. Differ. Equ. Appl. 4 (2013), 43-57. | MR | JFM

[3] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Parabolic equations in Musielak-Orlicz-Sobolev spaces. Int. J. Anal. Appl. 4 (2014), 174-191. | MR | JFM

[4] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces. Bol. Soc. Paran. Mat. (3) 33 (2015), 193-223. | MR

[5] Khellou, M. Ait, Benkirane, A., Douiri, S. M.: Existance of solutions for elliptic equations having naturel growth terms in Musielak-Orlicz spaces. J. Math. Comput. Sci. 4 (2014), 665-688.

[6] Azroul, E., Benboubker, M. B., Redwane, H., Yazough, C.: Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth. An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 69-87. | MR | JFM

[7] Azroul, E., Lekhlifi, M. El, Redwane, H., Touzani, A.: Entropy solutions of nonlinear parabolic equations in Orlicz-Sobolev spaces, without sign condition and $L^1$ data. J. Nonlinear Evol. Equ. Appl. 2014 (2014), 101-130. | MR | JFM

[8] Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations. Electron. J. Differ. Equ. 2013 (2013), Paper No. 68, 27 pages. | MR | JFM

[9] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. | MR | JFM

[10] Benkirane, A., Val, M. Ould Mohamedhen: Some approximation properties in Musielak-Orlicz-Sobolev spaces. Thai. J. Math. 10 (2012), 371-381. | MR | JFM

[11] Benkirane, A., Vally, M. Sidi El: Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc.-Simon Stevin 21 (2014), 787-811. | DOI | MR | JFM

[12] Vall, M. S. B. Elemine, Ahmed, A., Touzani, A., Benkirane, A.: Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data. Bol. Soc. Paran. Math. (3) 36 (2018), 125-150. | DOI | MR

[13] Elmahi, A., Meskine, D.: Parabolic equations in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 72 (2005), 410-428. | DOI | MR | JFM

[14] Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 1-35. | DOI | MR | JFM

[15] Gossez, J. P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190 (1974), 163-205. | DOI | MR | JFM

[16] Nassar, S. Hadj, Moussa, H., Rhoudaf, M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249 (2014), 253-264. | DOI | MR | JFM

[17] Landes, R., Mustonen, V.: A strongly nonlinear parabolic initial boundary value problem. Ark. Mat. 25 (1987), 29-40. | DOI | MR | JFM

[18] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer, Berlin (1983). | DOI | MR | JFM

[19] Redwane, H.: Existence of a solution for a class of parabolic equations with three unbounded nonlinearities. Adv. Dyn. Syst. Appl. 2 (2007), 241-264. | MR

[20] Redwane, H.: Existence results for a class of nonlinear parabolic equations in Orlicz spaces. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 2, 19 pages. | DOI | MR | JFM

[21] Vally, M. Sidi El: Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces. Adv. Dyn. Syst. Appl. 8 (2013), 115-124. | MR

Cité par Sources :