Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 173-188
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators ${D}_{n,p,q}^{\ast }$ and compute the rate of convergence for the function $f$ belonging to the class ${\rm Lip}_{M}(\gamma )$.
We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators ${D}_{n,p,q}^{\ast }$ and compute the rate of convergence for the function $f$ belonging to the class ${\rm Lip}_{M}(\gamma )$.
DOI : 10.21136/MB.2017.0086-16
Classification : 41A10, 41A25, 41A36
Keywords: $(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem
@article{10_21136_MB_2017_0086_16,
     author = {Mursaleen, Mohammad and Alabied, Ahmed A. H.},
     title = {Approximation properties for modified $(p,q)${-Bernstein-Durrmeyer} operators},
     journal = {Mathematica Bohemica},
     pages = {173--188},
     year = {2018},
     volume = {143},
     number = {2},
     doi = {10.21136/MB.2017.0086-16},
     mrnumber = {3831485},
     zbl = {06890413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/}
}
TY  - JOUR
AU  - Mursaleen, Mohammad
AU  - Alabied, Ahmed A. H.
TI  - Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators
JO  - Mathematica Bohemica
PY  - 2018
SP  - 173
EP  - 188
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/
DO  - 10.21136/MB.2017.0086-16
LA  - en
ID  - 10_21136_MB_2017_0086_16
ER  - 
%0 Journal Article
%A Mursaleen, Mohammad
%A Alabied, Ahmed A. H.
%T Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators
%J Mathematica Bohemica
%D 2018
%P 173-188
%V 143
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/
%R 10.21136/MB.2017.0086-16
%G en
%F 10_21136_MB_2017_0086_16
Mursaleen, Mohammad; Alabied, Ahmed A. H. Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 173-188. doi: 10.21136/MB.2017.0086-16

[1] Acar, T.: Asymptotic formulas for generalized Szász-Mirakyan operators. Appl. Math. Comput. 263 (2015), 233-239. | DOI | MR

[2] Acar, T.: $(p,q)$-generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 39 (2016), 2685-2695. | DOI | MR | JFM

[3] Acar, T., Aral, A., Mohiuddine, S. A.: Approximation by bivariate $(p,q)$-Bernstein-Kantorovich operators. (to appear) in Iran. J. Sci. Technol., Trans. A, Sci. (first online in June 2016), 8 pages. | DOI | MR

[4] Acar, T., Aral, A., Mohiuddine, S. A.: On Kantorovich modification of $(p,q)$-Baskakov operators. J. Inequal. Appl. 2016 (2016), Paper No. 98, 14 pages. | DOI | MR | JFM

[5] Acar, T., Ulusoy, G.: Approximation by modified Szász-Durrmeyer operators. Period. Math. Hung. 72 (2016), 64-75. | DOI | MR

[6] Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and Its Applications. de Gruyter Studies in Mathematics 17, Walter de Gruyter & Co., Berlin (1994). | DOI | MR | JFM

[7] Cai, Q. B., Zhou, G.: On $(p,q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 276 (2016), 12-20. | DOI | MR

[8] Chakrabarti, R., Jagannathan, R.: A $(p,q)$-oscillator realization of two parameter quantum algebras. J. Phys. A, Math. Gen. 24 (1991), L711--L718. | DOI | MR | JFM

[9] Gupta, V.: Some approximation properties of $q$-Durrmeyer operators. Appl. Math. Comput. 197 (2008), 172-178. | DOI | MR | JFM

[10] Hounkonnou, M.N., Kyemba, J. D. B.: $R(p,q)$-calculus: differentiation and integration. SUT J. Math. 49 (2013), 145-167. | MR | JFM

[11] Korovkin, P. P.: Linear Operators and Approximation Theory. Russian Monographs and Texts on Advanced Mathematics and Physics. Vol. III. Gordon and Breach Publishers, New York (1960). | MR | JFM

[12] Lupaş, A.: A $q$-analogue of the Bernstein operator. Prepr., "Babeş-Bolyai" Univ., Fac. Math., Res. Semin. 9 (1987), 85-92. | MR | JFM

[13] Milovanović, G. V., Gupta, V., Malik, N.: $(p,q)$-Beta functions and applications in approximation. (to appear) in Bol. Soc. Mat. Mex., III. Ser. (first online in June 2016), 19 pages (2016), 19 pages. | DOI | MR

[14] Mursaleen, M., Alotaibi, A., Ansari, K. J.: On a Kantorovich variant of $(p,q)$-Szász-Mirakjan operators. J. Funct. Spaces 2016 (2016), Article ID 1035253, 9 pages. | DOI | MR | JFM

[15] Mursaleen, M., Ansari, K. J., Khan, A.: Some approximation results by $(p,q)$-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 264 (2015), 392-402 corrigendum ibid. 269 2015 744-746. | DOI | MR

[16] Mursaleen, M., Ansari, K. J., Khan, A.: On $(p,q)$-analogue of Bernstein operators. Appl. Math. Comput. 266 (2015), 874-882 corrigendum ibid. 278 2016 70-71. | DOI | MR

[17] Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K. J.: Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p,q)$-integers. Filomat 30 (2016), 639-648. | DOI | MR

[18] Mursaleen, M., Nasiuzzaman, Md., Nurgali, A.: Some approximation results on Bernstein-Schurer operators defined by $(p,q)$-integers. J. Inequal. Appl. 2015 (2015), Paper No. 249, 12 pages. | DOI | MR | JFM

[19] Mursaleen, M., Sarsenbi, A. M., Khan, T.: On $(p,q)$-analogue of two parametric Stancu-beta operators. J. Inequal. Appl. 2016 (2016), Paper No. 190, 15 pages. | DOI | MR | JFM

[20] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. | MR | JFM

[21] Sharma, H.: Note on approximation properties of generalized Durrmeyer operators. Math. Sci., Springer (electronic only) 6 (2012), Paper No. 24, 6 pages. | DOI | MR | JFM

[22] Sharma, H.: On Durrmeyer-type generalization of $(p,q)$-Bernstein operators. Arab. J. Math. 5 (2016), 239-248. | DOI | MR | JFM

[23] Sharma, H., Gupta, C.: On $(p,q)$-generalization of Szász-Mirakyan-Kantorovich operators. Boll. Unione Mat. Ital. 8 (2015), 213-222. | DOI | MR | JFM

[24] Ulusoy, G., Acar, T.: $q$-Voronovskaya type theorems for $q$-Baskakov operators. Math. Methods Appl. Sci. 39 (2016), 3391-3401. | DOI | MR | JFM

Cité par Sources :