Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 173-188
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators ${D}_{n,p,q}^{\ast }$ and compute the rate of convergence for the function $f$ belonging to the class ${\rm Lip}_{M}(\gamma )$.
DOI :
10.21136/MB.2017.0086-16
Classification :
41A10, 41A25, 41A36
Keywords: $(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem
Keywords: $(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem
@article{10_21136_MB_2017_0086_16,
author = {Mursaleen, Mohammad and Alabied, Ahmed A. H.},
title = {Approximation properties for modified $(p,q)${-Bernstein-Durrmeyer} operators},
journal = {Mathematica Bohemica},
pages = {173--188},
publisher = {mathdoc},
volume = {143},
number = {2},
year = {2018},
doi = {10.21136/MB.2017.0086-16},
mrnumber = {3831485},
zbl = {06890413},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/}
}
TY - JOUR AU - Mursaleen, Mohammad AU - Alabied, Ahmed A. H. TI - Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators JO - Mathematica Bohemica PY - 2018 SP - 173 EP - 188 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/ DO - 10.21136/MB.2017.0086-16 LA - en ID - 10_21136_MB_2017_0086_16 ER -
%0 Journal Article %A Mursaleen, Mohammad %A Alabied, Ahmed A. H. %T Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators %J Mathematica Bohemica %D 2018 %P 173-188 %V 143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/ %R 10.21136/MB.2017.0086-16 %G en %F 10_21136_MB_2017_0086_16
Mursaleen, Mohammad; Alabied, Ahmed A. H. Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 173-188. doi: 10.21136/MB.2017.0086-16
Cité par Sources :