Keywords: $(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem
@article{10_21136_MB_2017_0086_16,
author = {Mursaleen, Mohammad and Alabied, Ahmed A. H.},
title = {Approximation properties for modified $(p,q)${-Bernstein-Durrmeyer} operators},
journal = {Mathematica Bohemica},
pages = {173--188},
year = {2018},
volume = {143},
number = {2},
doi = {10.21136/MB.2017.0086-16},
mrnumber = {3831485},
zbl = {06890413},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/}
}
TY - JOUR AU - Mursaleen, Mohammad AU - Alabied, Ahmed A. H. TI - Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators JO - Mathematica Bohemica PY - 2018 SP - 173 EP - 188 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/ DO - 10.21136/MB.2017.0086-16 LA - en ID - 10_21136_MB_2017_0086_16 ER -
%0 Journal Article %A Mursaleen, Mohammad %A Alabied, Ahmed A. H. %T Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators %J Mathematica Bohemica %D 2018 %P 173-188 %V 143 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0086-16/ %R 10.21136/MB.2017.0086-16 %G en %F 10_21136_MB_2017_0086_16
Mursaleen, Mohammad; Alabied, Ahmed A. H. Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 173-188. doi: 10.21136/MB.2017.0086-16
[1] Acar, T.: Asymptotic formulas for generalized Szász-Mirakyan operators. Appl. Math. Comput. 263 (2015), 233-239. | DOI | MR
[2] Acar, T.: $(p,q)$-generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 39 (2016), 2685-2695. | DOI | MR | JFM
[3] Acar, T., Aral, A., Mohiuddine, S. A.: Approximation by bivariate $(p,q)$-Bernstein-Kantorovich operators. (to appear) in Iran. J. Sci. Technol., Trans. A, Sci. (first online in June 2016), 8 pages. | DOI | MR
[4] Acar, T., Aral, A., Mohiuddine, S. A.: On Kantorovich modification of $(p,q)$-Baskakov operators. J. Inequal. Appl. 2016 (2016), Paper No. 98, 14 pages. | DOI | MR | JFM
[5] Acar, T., Ulusoy, G.: Approximation by modified Szász-Durrmeyer operators. Period. Math. Hung. 72 (2016), 64-75. | DOI | MR
[6] Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and Its Applications. de Gruyter Studies in Mathematics 17, Walter de Gruyter & Co., Berlin (1994). | DOI | MR | JFM
[7] Cai, Q. B., Zhou, G.: On $(p,q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 276 (2016), 12-20. | DOI | MR
[8] Chakrabarti, R., Jagannathan, R.: A $(p,q)$-oscillator realization of two parameter quantum algebras. J. Phys. A, Math. Gen. 24 (1991), L711--L718. | DOI | MR | JFM
[9] Gupta, V.: Some approximation properties of $q$-Durrmeyer operators. Appl. Math. Comput. 197 (2008), 172-178. | DOI | MR | JFM
[10] Hounkonnou, M.N., Kyemba, J. D. B.: $R(p,q)$-calculus: differentiation and integration. SUT J. Math. 49 (2013), 145-167. | MR | JFM
[11] Korovkin, P. P.: Linear Operators and Approximation Theory. Russian Monographs and Texts on Advanced Mathematics and Physics. Vol. III. Gordon and Breach Publishers, New York (1960). | MR | JFM
[12] Lupaş, A.: A $q$-analogue of the Bernstein operator. Prepr., "Babeş-Bolyai" Univ., Fac. Math., Res. Semin. 9 (1987), 85-92. | MR | JFM
[13] Milovanović, G. V., Gupta, V., Malik, N.: $(p,q)$-Beta functions and applications in approximation. (to appear) in Bol. Soc. Mat. Mex., III. Ser. (first online in June 2016), 19 pages (2016), 19 pages. | DOI | MR
[14] Mursaleen, M., Alotaibi, A., Ansari, K. J.: On a Kantorovich variant of $(p,q)$-Szász-Mirakjan operators. J. Funct. Spaces 2016 (2016), Article ID 1035253, 9 pages. | DOI | MR | JFM
[15] Mursaleen, M., Ansari, K. J., Khan, A.: Some approximation results by $(p,q)$-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 264 (2015), 392-402 corrigendum ibid. 269 2015 744-746. | DOI | MR
[16] Mursaleen, M., Ansari, K. J., Khan, A.: On $(p,q)$-analogue of Bernstein operators. Appl. Math. Comput. 266 (2015), 874-882 corrigendum ibid. 278 2016 70-71. | DOI | MR
[17] Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K. J.: Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p,q)$-integers. Filomat 30 (2016), 639-648. | DOI | MR
[18] Mursaleen, M., Nasiuzzaman, Md., Nurgali, A.: Some approximation results on Bernstein-Schurer operators defined by $(p,q)$-integers. J. Inequal. Appl. 2015 (2015), Paper No. 249, 12 pages. | DOI | MR | JFM
[19] Mursaleen, M., Sarsenbi, A. M., Khan, T.: On $(p,q)$-analogue of two parametric Stancu-beta operators. J. Inequal. Appl. 2016 (2016), Paper No. 190, 15 pages. | DOI | MR | JFM
[20] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. | MR | JFM
[21] Sharma, H.: Note on approximation properties of generalized Durrmeyer operators. Math. Sci., Springer (electronic only) 6 (2012), Paper No. 24, 6 pages. | DOI | MR | JFM
[22] Sharma, H.: On Durrmeyer-type generalization of $(p,q)$-Bernstein operators. Arab. J. Math. 5 (2016), 239-248. | DOI | MR | JFM
[23] Sharma, H., Gupta, C.: On $(p,q)$-generalization of Szász-Mirakyan-Kantorovich operators. Boll. Unione Mat. Ital. 8 (2015), 213-222. | DOI | MR | JFM
[24] Ulusoy, G., Acar, T.: $q$-Voronovskaya type theorems for $q$-Baskakov operators. Math. Methods Appl. Sci. 39 (2016), 3391-3401. | DOI | MR | JFM
Cité par Sources :