Itô-Henstock integral and Itô's formula for the operator-valued stochastic process
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 135-160
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce the Itô-Henstock integral of an operator-valued stochastic process and formulate a version of Itô's formula.
In this paper, we introduce the Itô-Henstock integral of an operator-valued stochastic process and formulate a version of Itô's formula.
DOI : 10.21136/MB.2017.0084-16
Classification : 60H05, 60H30
Keywords: Itô-Henstock integrable function; Itô's formula; $Q$-Wiener process
@article{10_21136_MB_2017_0084_16,
     author = {Labendia, Mhelmar A. and Teng, Timothy Robin Y. and de Lara-Tuprio, Elvira P.},
     title = {It\^o-Henstock integral and {It\^o's} formula for the operator-valued stochastic process},
     journal = {Mathematica Bohemica},
     pages = {135--160},
     year = {2018},
     volume = {143},
     number = {2},
     doi = {10.21136/MB.2017.0084-16},
     mrnumber = {3831483},
     zbl = {06890411},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0084-16/}
}
TY  - JOUR
AU  - Labendia, Mhelmar A.
AU  - Teng, Timothy Robin Y.
AU  - de Lara-Tuprio, Elvira P.
TI  - Itô-Henstock integral and Itô's formula for the operator-valued stochastic process
JO  - Mathematica Bohemica
PY  - 2018
SP  - 135
EP  - 160
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0084-16/
DO  - 10.21136/MB.2017.0084-16
LA  - en
ID  - 10_21136_MB_2017_0084_16
ER  - 
%0 Journal Article
%A Labendia, Mhelmar A.
%A Teng, Timothy Robin Y.
%A de Lara-Tuprio, Elvira P.
%T Itô-Henstock integral and Itô's formula for the operator-valued stochastic process
%J Mathematica Bohemica
%D 2018
%P 135-160
%V 143
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0084-16/
%R 10.21136/MB.2017.0084-16
%G en
%F 10_21136_MB_2017_0084_16
Labendia, Mhelmar A.; Teng, Timothy Robin Y.; de Lara-Tuprio, Elvira P. Itô-Henstock integral and Itô's formula for the operator-valued stochastic process. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 135-160. doi: 10.21136/MB.2017.0084-16

[1] Aubin, J.-P.: Applied Functional Analysis. Exercises by Bernard Cornet and Jean-Michel Lasry. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York (2000). | DOI | MR | JFM

[2] Chew, T.-S., Tay, J.-Y., Toh, T.-L.: The non-uniform Riemann approach to Itô's integral. Real Anal. Exch. 27 (2001-2002), 495-514. | MR | JFM

[3] Prato, G. Da: Introduction to Stochastic Analysis and Malliavin Calculus. Appunti. Scuola Normale Superiore di Pisa (Nuova Series) 13. Edizioni della Normale, Pisa (2014). | DOI | MR | JFM

[4] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 152. Cambridge University Press, Cambridge (2014). | DOI | MR | JFM

[5] Dieudonné, J.: Grundzüge der modernen Analysis. Band 9. Logik und Grundlagen der Mathematik, Bd. 25. Friedr. Vieweg & Sohn, Braunschweig (1987). | DOI | MR | JFM

[6] Gawarecki, L., Mandrekar, V.: Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations. Probability and Its Applications. Springer, Heidelberg (2011). | DOI | MR | JFM

[7] Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Chapman and Hall/CRC Press, Boca Raton (2016). | MR | JFM

[8] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM

[9] Graves, L. M.: Riemann integration and Taylor's theorem in general analysis. Transactions AMS 29 (1927), 163-177. | DOI | MR | JFM

[10] Henstock, R.: Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific Publishing, Singapore (1988). | DOI | MR | JFM

[11] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific Publishing, River Edge (2000). | DOI | MR | JFM

[12] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific Publishing, London (1989). | DOI | MR | JFM

[13] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). | MR | JFM

[14] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific Publishing, Hackensack (2011). | DOI | MR | JFM

[15] McShane, E. J.: Stochastic integrals and stochastic functional equations. SIAM J. Appl. Math. 17 (1969), 287-306. | DOI | MR | JFM

[16] Mikosch, T.: Elementary Stochastic Calculus---With Finance in View. Advanced Series on Statistical Science & Applied Probability 6. World Scientific Publishing, Singapore (1998). | DOI | MR | JFM

[17] Nashed, M. Z.: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis. Nonlinear Functional Analysis Appl., Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 Publ. 26 Math. Res. Center Univ. Wisconsin (1971), 103-309. | MR | JFM

[18] Pop-Stojanovic, Z. R.: On McShane's belated stochastic integral. SIAM J. Appl. Math. 22 (1972), 87-92. | DOI | MR | JFM

[19] Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1905. Springer, Berlin (2007). | DOI | MR | JFM

[20] Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, New York-London (1972). | MR | JFM

[21] Riedle, M.: Cylindrical Wiener processes. C. Donati-Martin et al. Séminaire de Probabilités XLIII Lecture Notes in Mathematics 2006. Springer, Berlin (2011), 191-214. | DOI | MR | JFM

[22] Toh, T.-L., Chew, T.-S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133-147. | DOI | MR | JFM

[23] Toh, T.-L., Chew, T.-S.: On the Henstock-Fubini theorem for multiple stochastic integrals. Real Anal. Exch. 30 (2005), 295-310. | DOI | MR | JFM

[24] Toh, T.-L., Chew, T.-S.: Henstock's version of Itô's formula. Real Anal. Exch. 35 (2010), 375-390. | DOI | MR | JFM

[25] Varadhan, S. R. S.: Probability Theory. Courant Lecture Notes in Mathematics 7. American Mathematical Society, Providence; New York Univ., Courant Institute of Mathematical Sciences, New York (2001). | DOI | MR | JFM

Cité par Sources :