Centered weighted composition operators via measure theory
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 123-134.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We describe the centered weighted composition operators on $L^2(\Sigma )$ in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert's theorem on centered composition operators.
DOI : 10.21136/MB.2017.0080-16
Classification : 47B20, 47B38
Keywords: Aluthge transform; Moore-Penrose inverse; weighted composition operator; conditional expectation; centered operator
@article{10_21136_MB_2017_0080_16,
     author = {Jabbarzadeh, Mohammad Reza and Jafari Bakhshkandi, Mehri},
     title = {Centered weighted composition operators via measure theory},
     journal = {Mathematica Bohemica},
     pages = {123--134},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2018},
     doi = {10.21136/MB.2017.0080-16},
     mrnumber = {3831482},
     zbl = {06890410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/}
}
TY  - JOUR
AU  - Jabbarzadeh, Mohammad Reza
AU  - Jafari Bakhshkandi, Mehri
TI  - Centered weighted composition operators via measure theory
JO  - Mathematica Bohemica
PY  - 2018
SP  - 123
EP  - 134
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/
DO  - 10.21136/MB.2017.0080-16
LA  - en
ID  - 10_21136_MB_2017_0080_16
ER  - 
%0 Journal Article
%A Jabbarzadeh, Mohammad Reza
%A Jafari Bakhshkandi, Mehri
%T Centered weighted composition operators via measure theory
%J Mathematica Bohemica
%D 2018
%P 123-134
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/
%R 10.21136/MB.2017.0080-16
%G en
%F 10_21136_MB_2017_0080_16
Jabbarzadeh, Mohammad Reza; Jafari Bakhshkandi, Mehri. Centered weighted composition operators via measure theory. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 123-134. doi : 10.21136/MB.2017.0080-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/

Cité par Sources :