Keywords: Aluthge transform; Moore-Penrose inverse; weighted composition operator; conditional expectation; centered operator
@article{10_21136_MB_2017_0080_16,
author = {Jabbarzadeh, Mohammad Reza and Jafari Bakhshkandi, Mehri},
title = {Centered weighted composition operators via measure theory},
journal = {Mathematica Bohemica},
pages = {123--134},
year = {2018},
volume = {143},
number = {2},
doi = {10.21136/MB.2017.0080-16},
mrnumber = {3831482},
zbl = {06890410},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/}
}
TY - JOUR AU - Jabbarzadeh, Mohammad Reza AU - Jafari Bakhshkandi, Mehri TI - Centered weighted composition operators via measure theory JO - Mathematica Bohemica PY - 2018 SP - 123 EP - 134 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/ DO - 10.21136/MB.2017.0080-16 LA - en ID - 10_21136_MB_2017_0080_16 ER -
%0 Journal Article %A Jabbarzadeh, Mohammad Reza %A Jafari Bakhshkandi, Mehri %T Centered weighted composition operators via measure theory %J Mathematica Bohemica %D 2018 %P 123-134 %V 143 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/ %R 10.21136/MB.2017.0080-16 %G en %F 10_21136_MB_2017_0080_16
Jabbarzadeh, Mohammad Reza; Jafari Bakhshkandi, Mehri. Centered weighted composition operators via measure theory. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 123-134. doi: 10.21136/MB.2017.0080-16
[1] Caradus, S. R.: Generalized Inverses and Operator Theory. Queen's Pap. Pure Appl. Math. 50. Queen's University, Kingston, Ontario (1978). | MR | JFM
[2] Embry-Wardrop, M., Lambert, A.: Measurable transformations and centred composition operators. Proc. R. Ir. Acad., Sect. A 90 (1990), 165-172. | MR | JFM
[3] Embry-Wardrop, M., Lambert, A.: Subnormality for the adjoint of a composition operator on $L^2$. J. Oper. Theory 25 (1991), 309-318. | MR | JFM
[4] Giselsson, O.: Half-centered operators. Online https://arxiv.org/pdf/1602.05081v1.pdf 44 pages.
[5] Hoover, T., Lambert, A., Quinn, J.: The Markov process determined by a weighted composition operator. Stud. Math. 72 (1982), 225-235. | DOI | MR | JFM
[6] Lambert, A.: Hyponormal composition operators. Bull. Lond. Math. Soc. 18 (1986), 395-400. | DOI | MR | JFM
[7] Morrel, B. B., Muhly, P. S.: Centered operators. Studia Math. 51 (1974), 251-263. | DOI | MR | JFM
[8] Singh, R. K., Komal, B. S.: Composition operators. Bull. Aust. Math. Soc. 18 (1978), 439-446. | DOI | MR | JFM
[9] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179. North-Holland Publishing, Amsterdam (1993). | DOI | MR | JFM
Cité par Sources :