Centered weighted composition operators via measure theory
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 123-134
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe the centered weighted composition operators on $L^2(\Sigma )$ in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert's theorem on centered composition operators.
We describe the centered weighted composition operators on $L^2(\Sigma )$ in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert's theorem on centered composition operators.
DOI : 10.21136/MB.2017.0080-16
Classification : 47B20, 47B38
Keywords: Aluthge transform; Moore-Penrose inverse; weighted composition operator; conditional expectation; centered operator
@article{10_21136_MB_2017_0080_16,
     author = {Jabbarzadeh, Mohammad Reza and Jafari Bakhshkandi, Mehri},
     title = {Centered weighted composition operators via measure theory},
     journal = {Mathematica Bohemica},
     pages = {123--134},
     year = {2018},
     volume = {143},
     number = {2},
     doi = {10.21136/MB.2017.0080-16},
     mrnumber = {3831482},
     zbl = {06890410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/}
}
TY  - JOUR
AU  - Jabbarzadeh, Mohammad Reza
AU  - Jafari Bakhshkandi, Mehri
TI  - Centered weighted composition operators via measure theory
JO  - Mathematica Bohemica
PY  - 2018
SP  - 123
EP  - 134
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/
DO  - 10.21136/MB.2017.0080-16
LA  - en
ID  - 10_21136_MB_2017_0080_16
ER  - 
%0 Journal Article
%A Jabbarzadeh, Mohammad Reza
%A Jafari Bakhshkandi, Mehri
%T Centered weighted composition operators via measure theory
%J Mathematica Bohemica
%D 2018
%P 123-134
%V 143
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0080-16/
%R 10.21136/MB.2017.0080-16
%G en
%F 10_21136_MB_2017_0080_16
Jabbarzadeh, Mohammad Reza; Jafari Bakhshkandi, Mehri. Centered weighted composition operators via measure theory. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 123-134. doi: 10.21136/MB.2017.0080-16

[1] Caradus, S. R.: Generalized Inverses and Operator Theory. Queen's Pap. Pure Appl. Math. 50. Queen's University, Kingston, Ontario (1978). | MR | JFM

[2] Embry-Wardrop, M., Lambert, A.: Measurable transformations and centred composition operators. Proc. R. Ir. Acad., Sect. A 90 (1990), 165-172. | MR | JFM

[3] Embry-Wardrop, M., Lambert, A.: Subnormality for the adjoint of a composition operator on $L^2$. J. Oper. Theory 25 (1991), 309-318. | MR | JFM

[4] Giselsson, O.: Half-centered operators. Online https://arxiv.org/pdf/1602.05081v1.pdf 44 pages.

[5] Hoover, T., Lambert, A., Quinn, J.: The Markov process determined by a weighted composition operator. Stud. Math. 72 (1982), 225-235. | DOI | MR | JFM

[6] Lambert, A.: Hyponormal composition operators. Bull. Lond. Math. Soc. 18 (1986), 395-400. | DOI | MR | JFM

[7] Morrel, B. B., Muhly, P. S.: Centered operators. Studia Math. 51 (1974), 251-263. | DOI | MR | JFM

[8] Singh, R. K., Komal, B. S.: Composition operators. Bull. Aust. Math. Soc. 18 (1978), 439-446. | DOI | MR | JFM

[9] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179. North-Holland Publishing, Amsterdam (1993). | DOI | MR | JFM

Cité par Sources :