Keywords: analytic function; univalent function; starlike function; strongly starlike function; convex function; close-to-convex function; Wright function; Bessel function; subordination of functions
@article{10_21136_MB_2017_0077_16,
author = {Maharana, Sudhananda and Prajapat, Jugal K. and Bansal, Deepak},
title = {Geometric properties of {Wright} function},
journal = {Mathematica Bohemica},
pages = {99--111},
year = {2018},
volume = {143},
number = {1},
doi = {10.21136/MB.2017.0077-16},
mrnumber = {3778052},
zbl = {06861594},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0077-16/}
}
TY - JOUR AU - Maharana, Sudhananda AU - Prajapat, Jugal K. AU - Bansal, Deepak TI - Geometric properties of Wright function JO - Mathematica Bohemica PY - 2018 SP - 99 EP - 111 VL - 143 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0077-16/ DO - 10.21136/MB.2017.0077-16 LA - en ID - 10_21136_MB_2017_0077_16 ER -
%0 Journal Article %A Maharana, Sudhananda %A Prajapat, Jugal K. %A Bansal, Deepak %T Geometric properties of Wright function %J Mathematica Bohemica %D 2018 %P 99-111 %V 143 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0077-16/ %R 10.21136/MB.2017.0077-16 %G en %F 10_21136_MB_2017_0077_16
Maharana, Sudhananda; Prajapat, Jugal K.; Bansal, Deepak. Geometric properties of Wright function. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 99-111. doi: 10.21136/MB.2017.0077-16
[1] Bansal, D., Prajapat, J. K.: Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 61 (2016), 338-350. | DOI | MR | JFM
[2] Baricz, Á., Kupán, P. A., Szász, R.: The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 142 (2014), 2019-2025. | DOI | MR | JFM
[3] Baricz, Á., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21 (2010), 641-653. | DOI | MR | JFM
[4] Baricz, Á., Szász, R.: The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. Singap. 12 (2014), 485-509. | DOI | MR | JFM
[5] Brickman, L., MacGregor, T. H., Wilken, D. R.: Convex hulls of some classical families of univalent functions. Trans. Am. Math. Soc. 156 (1971), 91-107. | DOI | MR | JFM
[6] Branges, L. de: A proof of the Bieberbach conjecture. Acta Math. 154 (1985), 137-152. | DOI | MR | JFM
[7] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). | MR | JFM
[8] Fejér, L.: Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Litt. Sci. Szeged 8 (1937), 89-115. | JFM
[9] Goodman, A. W.: Univalent Functions. Vol. I. Mariner Publishing, Tampa (1983). | MR | JFM
[10] Gorenflo, R., Luchko, Y., Mainardi, F.: Analytic properties and applications of the Wright functions. Fract. Cal. Appl. Anal. 2 (1999), 383-414. | MR | JFM
[11] Hallenbeck, D. J., Ruscheweyh, S.: Subordination by convex functions. Proc. Am. Math. Soc. 52 (1975), 191-195. | DOI | MR | JFM
[12] Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series 301. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1994). | MR | JFM
[13] Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 (1996), 23-28. | DOI | MR | JFM
[14] Miller, S. S., Mocanu, P. T.: Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 110 (1990), 333-342. | DOI | MR | JFM
[15] Miller, S. S., Mocanu, P. T.: Differential Subordinations. Theory and Applications. Pure and Applied Mathematics 225. A Series of Monographs and Textbooks. Marcel Dekker, New York (2000). | MR | JFM
[16] Mondal, S. R., Swaminathan, A.: Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 179-194. | MR | JFM
[17] Mustafa, N.: Geometric properties of normalized Wright functions. Math. Comput. Appl. 21 (2016), Paper No. 14, 10 pages. | DOI | MR
[18] Ozaki, S.: On the theory of multivalent functions II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45-87. | MR | JFM
[19] Piejko, K., Sokół, J.: On the convolution and subordination of convex functions. Appl. Math. Lett. 25 (2012), 448-453. | DOI | MR | JFM
[20] Ponnusamy, S.: The Hardy spaces of hypergeometric functions. Complex Variables, Theory Appl. 29 (1996), 83-96. | DOI | MR | JFM
[21] Ponnusamy, S.: Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput. Appl. Math. 88 (1998), 327-337. | DOI | MR | JFM
[22] Prajapat, J. K.: Certain geometric properties of normalized Bessel functions. Appl. Math. Lett. 24 (2011), 2133-2139. | DOI | MR | JFM
[23] Prajapat, J. K.: Certain geometric properties of the Wright function. Integral Transforms Spec. Funct. 26 (2015), 203-212. | DOI | MR | JFM
[24] Ruscheweyh, S., Singh, V.: On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 113 (1986), 1-11. | DOI | MR | JFM
[25] Szász, R., Kupán, P. A.: About the univalence of the Bessel functions. Stud. Univ. Babeş-Bolyai Math. 54 (2009), 127-132. | MR | JFM
[26] Tuneski, N.: On some simple sufficient conditions for univalence. Math. Bohem. 126 (2001), 229-236. | MR | JFM
[27] Wilf, H. S.: Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 12 (1961), 689-693. | DOI | MR | JFM
[28] Wright, E. M.: On the coefficients of power series having exponential singularities. J. London Math. Soc. 8 (1933), 71-80. | DOI | MR | JFM
[29] Yağmur, N.: Hardy space of Lommel functions. Bull. Korean Math. Soc. 52 (2015), 1035-1046. | DOI | MR | JFM
[30] Ya{ğ}mur, N., Orhan, H.: Starlikeness and convexity of generalized Struve functions. Abstr. Appl. Anal. 2013 (2013), Article ID 954513, 6 pages. | DOI | MR | JFM
[31] Yağmur, N., Orhan, H.: Hardy space of generalized Struve functions. Complex Var. Elliptic Equ. 59 (2014), 929-936. | DOI | MR | JFM
Cité par Sources :