Keywords: MV-algebras; mv-function; epimorphism
@article{10_21136_MB_2017_0077_14,
author = {Figallo, Aldo V. and Lattanzi, Marina B.},
title = {Epimorphisms between finite {MV-algebras}},
journal = {Mathematica Bohemica},
pages = {345--355},
year = {2017},
volume = {142},
number = {4},
doi = {10.21136/MB.2017.0077-14},
mrnumber = {3739022},
zbl = {06819590},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0077-14/}
}
TY - JOUR AU - Figallo, Aldo V. AU - Lattanzi, Marina B. TI - Epimorphisms between finite MV-algebras JO - Mathematica Bohemica PY - 2017 SP - 345 EP - 355 VL - 142 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0077-14/ DO - 10.21136/MB.2017.0077-14 LA - en ID - 10_21136_MB_2017_0077_14 ER -
Figallo, Aldo V.; Lattanzi, Marina B. Epimorphisms between finite MV-algebras. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 345-355. doi: 10.21136/MB.2017.0077-14
[1] Abad, M., Figallo, A.: On Łukasiewicz Homomorphisms. Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan (1992).
[2] Berman, J., Blok, W. J.: Free Łukasiewicz and hoop residuation algebras. Stud. Log. 77 (2004), 153-180. | DOI | MR | JFM
[3] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras. Annals of Discrete Mathematics 49. North-Holland, Amsterdam (1991). | DOI | MR | JFM
[4] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88 (1958), 467-490. | DOI | MR | JFM
[5] Chang,, C. C.: A new proof of the completeness of Łukasiewicz axioms. Trans. Am. Math. Soc. 93 (1959), 74-80. | DOI | MR | JFM
[6] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht (2000). | DOI | MR | JFM
[7] Cignoli, R., Dubuc, E. J., Mundici, D.: Extending Stone duality to multisets and locally finite $\rm MV$-algebras. J. Pure Appl. Algebra 189 (2004), 37-59. | DOI | MR | JFM
[8] Cignoli, R., Marra, V.: Stone duality for real-valued multisets. Forum Math. 24 (2012), 1317-1331. | DOI | MR | JFM
[9] Figallo, A. V.: Algebras implicativas de Łukasiewicz $(n+1)$-valuadas con diversas operaciones adicionales. Tesis Doctoral. Univ. Nac. del Sur (1990).
[10] Font, J. M., Rodríguez, A. J., Torrens, A.: Wajsberg algebras. Stochastica 8 (1984), 5-31. | MR | JFM
[11] Komori, Y.: Super-Łukasiewicz implicational logics. Nagoya Math. J. 72 (1978), 127-133. | DOI | MR | JFM
[12] Komori, Y.: Super Łukasiewicz propositional logics. Nagoya Math. J. 84 (1981), 119-133. | DOI | MR | JFM
[13] Łukasiewicz, J.: On three-valued logics. Ruch filozoficzny 5 (1920), 169-171 Polish.
[14] Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. C. R. Soc. Sc. Varsovie 23 (1930), 30-50. | JFM
[15] Martínez, N. G.: The Priestley duality for Wajsberg algebras. Stud. Log. 49 (1990), 31-46. | DOI | MR | JFM
[16] Monteiro, L. F.: Number of epimorphisms between finite Łukasiewicz algebras. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49(97) (2006), 177-187. | MR | JFM
[17] Rodríguez, A. J.: Un studio algebraico de los cálculos proposicionales de Łukasiewicz. Ph. Doc. Diss. Universitat de Barcelona (1980).
[18] Rodríguez, A. J., Torrens, A., Verdú, V.: Łukasiewicz logic and Wajsberg algebras. Bull. Sect. Log., Pol. Acad. Sci. 19 (1990), 51-55. | MR | JFM
Cité par Sources :