Keywords: approach space; probabilistic approach space; probabilistic convergence space; probabilistic metric space
@article{10_21136_MB_2017_0064_15,
author = {J\"ager, Gunther},
title = {Probabilistic approach spaces},
journal = {Mathematica Bohemica},
pages = {277--298},
year = {2017},
volume = {142},
number = {3},
doi = {10.21136/MB.2017.0064-15},
mrnumber = {3695467},
zbl = {06770146},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0064-15/}
}
Jäger, Gunther. Probabilistic approach spaces. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 277-298. doi: 10.21136/MB.2017.0064-15
[1] Abramsky, S., Jung, A.: Domain Theory. Handbook of Logic and Computer Science. Vol. 3 (S. Abramsky et al., eds.) Claredon Press, Oxford University Press, New York (1994), 1-168. | MR
[2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories---The Joy of Cats. John Wiley & Sons, New York (1990). | MR | JFM
[3] Brock, P.: Probabilistic convergence spaces and generalized metric spaces. Int. J. Math. Math. Sci. 21 (1998), 439-452. | DOI | MR | JFM
[4] Brock, P., Kent, D. C.: Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Struct. 5 (1997), 99-110. | DOI | MR | JFM
[5] Flagg, R. C.: Quantales and continuity spaces. Algebra Univers. 37 (1997), 257-276. | DOI | MR | JFM
[6] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications 93. Cambridge University Press, Cambridge (2003). | DOI | MR | JFM
[7] Jäger, G.: A convergence theory for probabilistic metric spaces. Quaestiones Math. 38 (2015), 587-599. | DOI | MR
[8] Kowalsky, H.-J.: Limesräume und Komplettierung. Math. Nachr. 12 (1954), 301-340. | DOI | MR | JFM
[9] Lowen, R.: Approach spaces: A common supercategory of TOP and MET. Math. Nachr. 141 (1989), 183-226. | DOI | MR | JFM
[10] Lowen, R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad. Oxford Mathematical Monographs. Clarendon Press, Oxford (1997). | MR | JFM
[11] Lowen, R.: Index Analysis: Approach Theory at Work. Springer Monographs in Mathematics. Springer, London (2015). | DOI | MR | JFM
[12] Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 28 (1942), 535-537. | DOI | MR | JFM
[13] Preuss, G.: Foundations of Topology: An Approach to Convenient Topology. Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR | JFM
[14] Richardson, G. D., Kent, D. C.: Probabilistic convergence spaces. J. Aust. Math. Soc., Ser. A 61 (1996), 400-420. | DOI | MR | JFM
[15] Roldán-López-de-Hierro, A.-F., Sen, M. de la, Martínez-Moreno, J., Hierro, C. Roldán-López-de-: An approach version of fuzzy metric spaces including an ad hoc fixed point theorem. Fixed Point Theory Appl. (electronic only) (2015), Article ID 33, 23 pages. | DOI | MR | JFM
[16] Saminger-Platz, S., Sempi, C.: A primer on triangle functions I. Aequationes Math. 76 (2008), 201-240. | DOI | MR | JFM
[17] Saminger-Platz, S., Sempi, C.: A primer on triangle functions II. Aequationes Math. 80 (2010), 239-268. | DOI | MR | JFM
[18] Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10 (1960), 313-334. | DOI | MR | JFM
[19] Schweizer, B., Sklar, A.: Probabilistic metric spaces. North Holland Series in Probability and Applied Mathematics. North Holland, New York (1983). | DOI | MR | JFM
[20] Tardiff, R. M.: Topologies for probabilistic metric spaces. Pac. J. Math. 65 (1976), 233-251. | DOI | MR | JFM
[21] Wald, A.: On a statistical generalization of metric spaces. Proc. Natl. Acad. Sci. USA 29 (1943), 196-197. | DOI | MR | JFM
Cité par Sources :