Probabilistic approach spaces
Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 277-298
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to a simultaneously bireflective and bicoreflective subcategory and that the category of probabilistic quasi-metric spaces is isomorphic to a bicoreflective subcategory of the category of probabilistic approach spaces.
We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to a simultaneously bireflective and bicoreflective subcategory and that the category of probabilistic quasi-metric spaces is isomorphic to a bicoreflective subcategory of the category of probabilistic approach spaces.
DOI : 10.21136/MB.2017.0064-15
Classification : 54A20, 54E70, 54E99, 60B99
Keywords: approach space; probabilistic approach space; probabilistic convergence space; probabilistic metric space
@article{10_21136_MB_2017_0064_15,
     author = {J\"ager, Gunther},
     title = {Probabilistic approach spaces},
     journal = {Mathematica Bohemica},
     pages = {277--298},
     year = {2017},
     volume = {142},
     number = {3},
     doi = {10.21136/MB.2017.0064-15},
     mrnumber = {3695467},
     zbl = {06770146},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0064-15/}
}
TY  - JOUR
AU  - Jäger, Gunther
TI  - Probabilistic approach spaces
JO  - Mathematica Bohemica
PY  - 2017
SP  - 277
EP  - 298
VL  - 142
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0064-15/
DO  - 10.21136/MB.2017.0064-15
LA  - en
ID  - 10_21136_MB_2017_0064_15
ER  - 
%0 Journal Article
%A Jäger, Gunther
%T Probabilistic approach spaces
%J Mathematica Bohemica
%D 2017
%P 277-298
%V 142
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0064-15/
%R 10.21136/MB.2017.0064-15
%G en
%F 10_21136_MB_2017_0064_15
Jäger, Gunther. Probabilistic approach spaces. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 277-298. doi: 10.21136/MB.2017.0064-15

[1] Abramsky, S., Jung, A.: Domain Theory. Handbook of Logic and Computer Science. Vol. 3 (S. Abramsky et al., eds.) Claredon Press, Oxford University Press, New York (1994), 1-168. | MR

[2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories---The Joy of Cats. John Wiley & Sons, New York (1990). | MR | JFM

[3] Brock, P.: Probabilistic convergence spaces and generalized metric spaces. Int. J. Math. Math. Sci. 21 (1998), 439-452. | DOI | MR | JFM

[4] Brock, P., Kent, D. C.: Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Struct. 5 (1997), 99-110. | DOI | MR | JFM

[5] Flagg, R. C.: Quantales and continuity spaces. Algebra Univers. 37 (1997), 257-276. | DOI | MR | JFM

[6] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications 93. Cambridge University Press, Cambridge (2003). | DOI | MR | JFM

[7] Jäger, G.: A convergence theory for probabilistic metric spaces. Quaestiones Math. 38 (2015), 587-599. | DOI | MR

[8] Kowalsky, H.-J.: Limesräume und Komplettierung. Math. Nachr. 12 (1954), 301-340. | DOI | MR | JFM

[9] Lowen, R.: Approach spaces: A common supercategory of TOP and MET. Math. Nachr. 141 (1989), 183-226. | DOI | MR | JFM

[10] Lowen, R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad. Oxford Mathematical Monographs. Clarendon Press, Oxford (1997). | MR | JFM

[11] Lowen, R.: Index Analysis: Approach Theory at Work. Springer Monographs in Mathematics. Springer, London (2015). | DOI | MR | JFM

[12] Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 28 (1942), 535-537. | DOI | MR | JFM

[13] Preuss, G.: Foundations of Topology: An Approach to Convenient Topology. Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR | JFM

[14] Richardson, G. D., Kent, D. C.: Probabilistic convergence spaces. J. Aust. Math. Soc., Ser. A 61 (1996), 400-420. | DOI | MR | JFM

[15] Roldán-López-de-Hierro, A.-F., Sen, M. de la, Martínez-Moreno, J., Hierro, C. Roldán-López-de-: An approach version of fuzzy metric spaces including an ad hoc fixed point theorem. Fixed Point Theory Appl. (electronic only) (2015), Article ID 33, 23 pages. | DOI | MR | JFM

[16] Saminger-Platz, S., Sempi, C.: A primer on triangle functions I. Aequationes Math. 76 (2008), 201-240. | DOI | MR | JFM

[17] Saminger-Platz, S., Sempi, C.: A primer on triangle functions II. Aequationes Math. 80 (2010), 239-268. | DOI | MR | JFM

[18] Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10 (1960), 313-334. | DOI | MR | JFM

[19] Schweizer, B., Sklar, A.: Probabilistic metric spaces. North Holland Series in Probability and Applied Mathematics. North Holland, New York (1983). | DOI | MR | JFM

[20] Tardiff, R. M.: Topologies for probabilistic metric spaces. Pac. J. Math. 65 (1976), 233-251. | DOI | MR | JFM

[21] Wald, A.: On a statistical generalization of metric spaces. Proc. Natl. Acad. Sci. USA 29 (1943), 196-197. | DOI | MR | JFM

Cité par Sources :