Keywords: practical Ulam-Hyers-Rassias stability; nonlinear equation
@article{10_21136_MB_2017_0058_14,
author = {Wang, Jin Rong and Fe\v{c}kan, Michal},
title = {Practical {Ulam-Hyers-Rassias} stability for nonlinear equations},
journal = {Mathematica Bohemica},
pages = {47--56},
year = {2017},
volume = {142},
number = {1},
doi = {10.21136/MB.2017.0058-14},
mrnumber = {3619986},
zbl = {06738569},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0058-14/}
}
TY - JOUR AU - Wang, Jin Rong AU - Fečkan, Michal TI - Practical Ulam-Hyers-Rassias stability for nonlinear equations JO - Mathematica Bohemica PY - 2017 SP - 47 EP - 56 VL - 142 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0058-14/ DO - 10.21136/MB.2017.0058-14 LA - en ID - 10_21136_MB_2017_0058_14 ER -
%0 Journal Article %A Wang, Jin Rong %A Fečkan, Michal %T Practical Ulam-Hyers-Rassias stability for nonlinear equations %J Mathematica Bohemica %D 2017 %P 47-56 %V 142 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0058-14/ %R 10.21136/MB.2017.0058-14 %G en %F 10_21136_MB_2017_0058_14
Wang, Jin Rong; Fečkan, Michal. Practical Ulam-Hyers-Rassias stability for nonlinear equations. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 47-56. doi: 10.21136/MB.2017.0058-14
[1] Allgower, E. L., Georg, K.: Numerical Continuation Methods. An Introduction. Springer Series in Computational Mathematics 13 Springer, Berlin (1990). | DOI | MR | JFM
[2] András, S., Mészáros, A. R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219 (2013), 4853-4864. | DOI | MR | JFM
[3] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). | DOI | MR | JFM
[4] Berger, M. S.: Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977). | MR | JFM
[5] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hung. 7 (1956), 81-94. | DOI | MR | JFM
[6] Burger, M., Ozawa, N., Thom, A.: On Ulam stability. Isr. J. Math. 193 (2013), 109-129. | DOI | MR | JFM
[7] Cădariu, L.: Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale. Univ. Vest Timişoara Timişoara (2007).
[8] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften 251. A Series of Comprehensive Studies in Mathematics Springer, New York (1982). | DOI | MR | JFM
[9] Cimpean, D. S., Popa, D.: Hyers-Ulam stability of Euler's equation. Appl. Math. Lett. 24 (2011), 1539-1543. | DOI | MR | JFM
[10] Hegyi, B., Jung, S.-M.: On the stability of Laplace's equation. Appl. Math. Lett. 26 (2013), 549-552. | DOI | MR | JFM
[11] Hyers, D. H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. | DOI | MR | JFM
[12] Hyers, D. H., Isac, G., Rassias, T. M.: Stability of Functional Equations in Several Vari- ables. Progress in Nonlinear Differential Equations and Their Applications 34 Birkhäuser, Boston (1998). | DOI | MR | JFM
[13] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001). | MR | JFM
[14] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems. World Scientific, Singapore (1990). | MR | JFM
[15] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385 (2012), 86-91. | DOI | MR | JFM
[16] Park, C.: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Bull. Sci. Math. 132 (2008), 87-96. | DOI | MR | JFM
[17] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381 (2011), 530-537. | DOI | MR | JFM
[18] Rassias, T. M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297-300. | DOI | MR | JFM
[19] Rus, I. A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26 (2010), 103-107. | MR | JFM
[20] Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics 5 Springer, New York (2010). | DOI | MR | JFM
[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis. John Wiley & Sons, New York (1980). | MR | JFM
[22] Ulam, S. M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960). | MR | JFM
[23] Wang, J., Fečkan, M.: Ulam-Hyers-Rassias stability for semilinear equations. Discontin. Nonlinearity Complex 3 (2014), 379-388. | DOI | JFM
[24] Wang, J., Fečkan, M., Zhou, Y.: Ulam's type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395 (2012), 258-264. | DOI | MR | JFM
[25] Wei, Y., Ding, J.: Representations for Moore-Penrose inverses in Hilbert spaces. Appl. Math. Lett. 14 (2001), 599-604. | DOI | MR | JFM
Cité par Sources :