Keywords: (strong) endomorphism; congruence; kernel; connected monounary algebra; cycle
@article{10_21136_MB_2017_0056_16,
author = {Halu\v{s}kov\'a, Em{\'\i}lia},
title = {Strong endomorphism kernel property for monounary algebras},
journal = {Mathematica Bohemica},
pages = {161--171},
year = {2018},
volume = {143},
number = {2},
doi = {10.21136/MB.2017.0056-16},
mrnumber = {3831484},
zbl = {06890412},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0056-16/}
}
TY - JOUR AU - Halušková, Emília TI - Strong endomorphism kernel property for monounary algebras JO - Mathematica Bohemica PY - 2018 SP - 161 EP - 171 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0056-16/ DO - 10.21136/MB.2017.0056-16 LA - en ID - 10_21136_MB_2017_0056_16 ER -
Halušková, Emília. Strong endomorphism kernel property for monounary algebras. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 161-171. doi: 10.21136/MB.2017.0056-16
[1] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double p-algebras. Sci. Math. Jpn. 76 (2013), 227-234. | MR | JFM
[2] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. | DOI | MR | JFM
[3] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive p-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. | MR | JFM
[4] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. | DOI | MR | JFM
[5] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. | DOI | JFM
[6] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices. Algebra Univers. 75 (2016), 243-255. | DOI | MR | JFM
[7] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. Pavol Jozef Šafárik University, Košice (2009). | JFM
[8] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties. Vol. 1. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advance Books & Software XII. Monterey, California (1987). | MR | JFM
Cité par Sources :