Strong endomorphism kernel property for monounary algebras
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 161-171
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

All monounary algebras which have strong endomorphism kernel property are described.
All monounary algebras which have strong endomorphism kernel property are described.
DOI : 10.21136/MB.2017.0056-16
Classification : 08A30, 08A35, 08A60
Keywords: (strong) endomorphism; congruence; kernel; connected monounary algebra; cycle
@article{10_21136_MB_2017_0056_16,
     author = {Halu\v{s}kov\'a, Em{\'\i}lia},
     title = {Strong endomorphism kernel property for monounary algebras},
     journal = {Mathematica Bohemica},
     pages = {161--171},
     year = {2018},
     volume = {143},
     number = {2},
     doi = {10.21136/MB.2017.0056-16},
     mrnumber = {3831484},
     zbl = {06890412},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0056-16/}
}
TY  - JOUR
AU  - Halušková, Emília
TI  - Strong endomorphism kernel property for monounary algebras
JO  - Mathematica Bohemica
PY  - 2018
SP  - 161
EP  - 171
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0056-16/
DO  - 10.21136/MB.2017.0056-16
LA  - en
ID  - 10_21136_MB_2017_0056_16
ER  - 
%0 Journal Article
%A Halušková, Emília
%T Strong endomorphism kernel property for monounary algebras
%J Mathematica Bohemica
%D 2018
%P 161-171
%V 143
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0056-16/
%R 10.21136/MB.2017.0056-16
%G en
%F 10_21136_MB_2017_0056_16
Halušková, Emília. Strong endomorphism kernel property for monounary algebras. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 161-171. doi: 10.21136/MB.2017.0056-16

[1] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double p-algebras. Sci. Math. Jpn. 76 (2013), 227-234. | MR | JFM

[2] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. | DOI | MR | JFM

[3] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive p-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. | MR | JFM

[4] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. | DOI | MR | JFM

[5] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. | DOI | JFM

[6] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices. Algebra Univers. 75 (2016), 243-255. | DOI | MR | JFM

[7] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. Pavol Jozef Šafárik University, Košice (2009). | JFM

[8] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties. Vol. 1. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advance Books & Software XII. Monterey, California (1987). | MR | JFM

Cité par Sources :