Oscillations of nonlinear difference equations with deviating arguments
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 67-87
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
DOI : 10.21136/MB.2017.0055-16
Classification : 39A10, 39A21
Keywords: infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
@article{10_21136_MB_2017_0055_16,
     author = {Chatzarakis, George E. and Dix, Julio G.},
     title = {Oscillations of nonlinear difference equations with deviating arguments},
     journal = {Mathematica Bohemica},
     pages = {67--87},
     year = {2018},
     volume = {143},
     number = {1},
     doi = {10.21136/MB.2017.0055-16},
     mrnumber = {3778050},
     zbl = {06861592},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/}
}
TY  - JOUR
AU  - Chatzarakis, George E.
AU  - Dix, Julio G.
TI  - Oscillations of nonlinear difference equations with deviating arguments
JO  - Mathematica Bohemica
PY  - 2018
SP  - 67
EP  - 87
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/
DO  - 10.21136/MB.2017.0055-16
LA  - en
ID  - 10_21136_MB_2017_0055_16
ER  - 
%0 Journal Article
%A Chatzarakis, George E.
%A Dix, Julio G.
%T Oscillations of nonlinear difference equations with deviating arguments
%J Mathematica Bohemica
%D 2018
%P 67-87
%V 143
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/
%R 10.21136/MB.2017.0055-16
%G en
%F 10_21136_MB_2017_0055_16
Chatzarakis, George E.; Dix, Julio G. Oscillations of nonlinear difference equations with deviating arguments. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 67-87. doi: 10.21136/MB.2017.0055-16

[1] Berezansky, L., Braverman, E.: On existence of positive solutions for linear difference equations with several delays. Adv. Dyn. Syst. Appl. 1 (2006), 29-47. | MR | JFM

[2] Chatzarakis, G. E., Koplatadze, R., Stavroulakis, I. P.: Optimal oscillation criteria for first order difference equations with delay argument. Pac. J. Math. 235 (2008), 15-33. | DOI | MR | JFM

[3] Chatzarakis, G. E., Pinelas, S., Stavroulakis, I. P.: Oscillations of difference equations with several deviated arguments. Aequationes Math. 88 (2014), 105-123. | DOI | MR | JFM

[4] Chatzarakis, G. E., Stavroulakis, I. P.: Oscillations of first order linear delay difference equations. Aust. J. Math. Anal. Appl. (electronic only) 3 (2006), Article ID 14, 11 pages. | MR | JFM

[5] Dix, J. P., Dix, J. G.: Oscillations of solutions to nonlinear first-order delay differential equations. Involve 9 (2016), 465-482. | DOI | MR | JFM

[6] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional-Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1994). | MR | JFM

[7] Erbe, L. H., Zhang, B. G.: Oscillation of discrete analogues of delay equations. Differ. Integral Equ. 2 (1989), 300-309. | MR | JFM

[8] Ladas, G.: Explicit conditions for the oscillation of difference equations. J. Math. Anal. Appl. 153 (1990), 276-287. | DOI | MR | JFM

[9] Ladas, G., Philos, C. G., Sficas, Y. G.: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simulation 2 (1989), 101-111. | DOI | MR | JFM

[10] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). | MR | JFM

[11] Li, B.: Oscillation of first order delay differential equations. Proc. Am. Math. Soc. 124 (1996), 3729-3737. | DOI | MR | JFM

[12] Li, X., Zhu, D.: Oscillation of advanced difference equations with variable coefficients. Ann. Differ. Equations 18 (2002), 254-263. | MR | JFM

[13] Luo, X. N., Zhou, Y., Li, C. F.: Oscillation of a nonlinear difference equation with several delays. Math. Bohem. 128 (2003), 309-317. | MR | JFM

[14] Tang, X. H., Yu, J. S.: Oscillation of delay difference equation. Comput. Math. Appl. 37 (1999), 11-20. | DOI | MR | JFM

[15] Tang, X. H., Zhang, R. Y.: New oscillation criteria for delay difference equations. Comput. Math. Appl. 42 (2001), 1319-1330. | DOI | MR | JFM

[16] Wang, X.: Oscillation of delay difference equations with several delays. J. Math. Anal. Appl. 286 (2003), 664-674. | DOI | MR | JFM

[17] Yan, W., Meng, Q., Yan, J.: Oscillation criteria for difference equation of variable delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 2, suppl., 641-647. | MR

[18] Zhang, B. G., Zhou, Y.: Oscillations of difference equations with several delays. Comput. Math. Appl. 44 (2002), 817-821. | DOI | MR | JFM

Cité par Sources :