Oscillations of nonlinear difference equations with deviating arguments
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 67-87.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
DOI : 10.21136/MB.2017.0055-16
Classification : 39A10, 39A21
Keywords: infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
@article{10_21136_MB_2017_0055_16,
     author = {Chatzarakis, George E. and Dix, Julio G.},
     title = {Oscillations of nonlinear difference equations with deviating arguments},
     journal = {Mathematica Bohemica},
     pages = {67--87},
     publisher = {mathdoc},
     volume = {143},
     number = {1},
     year = {2018},
     doi = {10.21136/MB.2017.0055-16},
     mrnumber = {3778050},
     zbl = {06861592},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/}
}
TY  - JOUR
AU  - Chatzarakis, George E.
AU  - Dix, Julio G.
TI  - Oscillations of nonlinear difference equations with deviating arguments
JO  - Mathematica Bohemica
PY  - 2018
SP  - 67
EP  - 87
VL  - 143
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/
DO  - 10.21136/MB.2017.0055-16
LA  - en
ID  - 10_21136_MB_2017_0055_16
ER  - 
%0 Journal Article
%A Chatzarakis, George E.
%A Dix, Julio G.
%T Oscillations of nonlinear difference equations with deviating arguments
%J Mathematica Bohemica
%D 2018
%P 67-87
%V 143
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/
%R 10.21136/MB.2017.0055-16
%G en
%F 10_21136_MB_2017_0055_16
Chatzarakis, George E.; Dix, Julio G. Oscillations of nonlinear difference equations with deviating arguments. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 67-87. doi : 10.21136/MB.2017.0055-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0055-16/

Cité par Sources :