Keywords: neutral delay differential equation; positive periodic solution; cone; fixed point index
@article{10_21136_MB_2017_0050_16,
author = {Li, Yongxiang and Liu, Ailan},
title = {Positive periodic solutions of a neutral functional differential equation with multiple delays},
journal = {Mathematica Bohemica},
pages = {11--24},
year = {2018},
volume = {143},
number = {1},
doi = {10.21136/MB.2017.0050-16},
mrnumber = {3778047},
zbl = {06861589},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/}
}
TY - JOUR AU - Li, Yongxiang AU - Liu, Ailan TI - Positive periodic solutions of a neutral functional differential equation with multiple delays JO - Mathematica Bohemica PY - 2018 SP - 11 EP - 24 VL - 143 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/ DO - 10.21136/MB.2017.0050-16 LA - en ID - 10_21136_MB_2017_0050_16 ER -
%0 Journal Article %A Li, Yongxiang %A Liu, Ailan %T Positive periodic solutions of a neutral functional differential equation with multiple delays %J Mathematica Bohemica %D 2018 %P 11-24 %V 143 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/ %R 10.21136/MB.2017.0050-16 %G en %F 10_21136_MB_2017_0050_16
Li, Yongxiang; Liu, Ailan. Positive periodic solutions of a neutral functional differential equation with multiple delays. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 11-24. doi: 10.21136/MB.2017.0050-16
[1] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). | DOI | MR | JFM
[2] Freedman, H. I., Wu, J.: Periodic solutions of single-species models with periodic delay. SIAM J. Math. Anal. 23 (1992), 689-701. | DOI | MR | JFM
[3] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). | MR | JFM
[4] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences. Vol. 3. Springer, New York (1977). | DOI | MR | JFM
[5] Hatvani, L., Krisztin, T.: On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations. J. Differ. Equations 97 (1992), 1-15. | DOI | MR | JFM
[6] Kang, S., Zhang, G.: Existence of nontrivial periodic solutions for first order functional differential equations. Appl. Math. Lett. 18 (2005), 101-107. | DOI | MR | JFM
[7] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191. Academic Press, Boston (1993). | MR | JFM
[8] Luo, Y., Wang, W., Shen, J.: Existence of positive periodic solutions for two kinds of neutral functional differential equations. Appl. Math. Lett. 21 (2008), 581-587. | DOI | MR | JFM
[9] Mallet-Paret, J., Nussbaum, R. D.: Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation. Ann. Math. Pure Appl. (4) 145 (1986), 33-128. | DOI | MR | JFM
[10] Serra, E.: Periodic solutions for some nonlinear differential-equations of neutral type. Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. | DOI | MR | JFM
[11] Wan, A., Jiang, D.: Existence of positive periodic solutions for functional differential equations. Kyushu J. Math. 56 (2002), 193-202. | DOI | MR | JFM
[12] Wan, A., Jiang, D., Xu, X.: A new existence theory for positive periodic solutions to functional differential equations. Comput. Math. Appl. 47 (2004), 1257-1262. | DOI | MR | JFM
Cité par Sources :