Positive periodic solutions of a neutral functional differential equation with multiple delays
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 11-24
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper deals with the existence of positive $\omega $-periodic solutions for the neutral functional differential equation with multiple delays $$(u(t)-cu(t-\delta ))'+a(t) u(t)=f(t, u(t-\tau _1), \cdots , u(t-\tau _n)).$$ The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots , x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.
DOI :
10.21136/MB.2017.0050-16
Classification :
34K13, 34K40, 47H11
Keywords: neutral delay differential equation; positive periodic solution; cone; fixed point index
Keywords: neutral delay differential equation; positive periodic solution; cone; fixed point index
@article{10_21136_MB_2017_0050_16,
author = {Li, Yongxiang and Liu, Ailan},
title = {Positive periodic solutions of a neutral functional differential equation with multiple delays},
journal = {Mathematica Bohemica},
pages = {11--24},
publisher = {mathdoc},
volume = {143},
number = {1},
year = {2018},
doi = {10.21136/MB.2017.0050-16},
mrnumber = {3778047},
zbl = {06861589},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/}
}
TY - JOUR AU - Li, Yongxiang AU - Liu, Ailan TI - Positive periodic solutions of a neutral functional differential equation with multiple delays JO - Mathematica Bohemica PY - 2018 SP - 11 EP - 24 VL - 143 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/ DO - 10.21136/MB.2017.0050-16 LA - en ID - 10_21136_MB_2017_0050_16 ER -
%0 Journal Article %A Li, Yongxiang %A Liu, Ailan %T Positive periodic solutions of a neutral functional differential equation with multiple delays %J Mathematica Bohemica %D 2018 %P 11-24 %V 143 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/ %R 10.21136/MB.2017.0050-16 %G en %F 10_21136_MB_2017_0050_16
Li, Yongxiang; Liu, Ailan. Positive periodic solutions of a neutral functional differential equation with multiple delays. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 11-24. doi: 10.21136/MB.2017.0050-16
Cité par Sources :