Positive periodic solutions of a neutral functional differential equation with multiple delays
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 11-24
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with the existence of positive $\omega $-periodic solutions for the neutral functional differential equation with multiple delays $$(u(t)-cu(t-\delta ))'+a(t) u(t)=f(t, u(t-\tau _1), \cdots , u(t-\tau _n)).$$ The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots , x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.
This paper deals with the existence of positive $\omega $-periodic solutions for the neutral functional differential equation with multiple delays $$(u(t)-cu(t-\delta ))'+a(t) u(t)=f(t, u(t-\tau _1), \cdots , u(t-\tau _n)).$$ The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots , x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.
DOI : 10.21136/MB.2017.0050-16
Classification : 34K13, 34K40, 47H11
Keywords: neutral delay differential equation; positive periodic solution; cone; fixed point index
@article{10_21136_MB_2017_0050_16,
     author = {Li, Yongxiang and Liu, Ailan},
     title = {Positive periodic solutions of a neutral functional differential equation with multiple delays},
     journal = {Mathematica Bohemica},
     pages = {11--24},
     year = {2018},
     volume = {143},
     number = {1},
     doi = {10.21136/MB.2017.0050-16},
     mrnumber = {3778047},
     zbl = {06861589},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/}
}
TY  - JOUR
AU  - Li, Yongxiang
AU  - Liu, Ailan
TI  - Positive periodic solutions of a neutral functional differential equation with multiple delays
JO  - Mathematica Bohemica
PY  - 2018
SP  - 11
EP  - 24
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/
DO  - 10.21136/MB.2017.0050-16
LA  - en
ID  - 10_21136_MB_2017_0050_16
ER  - 
%0 Journal Article
%A Li, Yongxiang
%A Liu, Ailan
%T Positive periodic solutions of a neutral functional differential equation with multiple delays
%J Mathematica Bohemica
%D 2018
%P 11-24
%V 143
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0050-16/
%R 10.21136/MB.2017.0050-16
%G en
%F 10_21136_MB_2017_0050_16
Li, Yongxiang; Liu, Ailan. Positive periodic solutions of a neutral functional differential equation with multiple delays. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 11-24. doi: 10.21136/MB.2017.0050-16

[1] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). | DOI | MR | JFM

[2] Freedman, H. I., Wu, J.: Periodic solutions of single-species models with periodic delay. SIAM J. Math. Anal. 23 (1992), 689-701. | DOI | MR | JFM

[3] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). | MR | JFM

[4] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences. Vol. 3. Springer, New York (1977). | DOI | MR | JFM

[5] Hatvani, L., Krisztin, T.: On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations. J. Differ. Equations 97 (1992), 1-15. | DOI | MR | JFM

[6] Kang, S., Zhang, G.: Existence of nontrivial periodic solutions for first order functional differential equations. Appl. Math. Lett. 18 (2005), 101-107. | DOI | MR | JFM

[7] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191. Academic Press, Boston (1993). | MR | JFM

[8] Luo, Y., Wang, W., Shen, J.: Existence of positive periodic solutions for two kinds of neutral functional differential equations. Appl. Math. Lett. 21 (2008), 581-587. | DOI | MR | JFM

[9] Mallet-Paret, J., Nussbaum, R. D.: Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation. Ann. Math. Pure Appl. (4) 145 (1986), 33-128. | DOI | MR | JFM

[10] Serra, E.: Periodic solutions for some nonlinear differential-equations of neutral type. Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. | DOI | MR | JFM

[11] Wan, A., Jiang, D.: Existence of positive periodic solutions for functional differential equations. Kyushu J. Math. 56 (2002), 193-202. | DOI | MR | JFM

[12] Wan, A., Jiang, D., Xu, X.: A new existence theory for positive periodic solutions to functional differential equations. Comput. Math. Appl. 47 (2004), 1257-1262. | DOI | MR | JFM

Cité par Sources :