Sur les représentations tempérées d'un groupe réductif $p$-adique non connexe: Cas où $G/G^{0}$ est commutatif et fini
Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 387-403
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Soit $G$ l'ensemble des points rationnels d'un groupe algébrique réductif non connexe $p$-adique de caractéristique $0$. Soit $G^{0}$ la composante neutre de $G$. On suppose que $G/G^{0}$ est commutatif et fini. Notre motivation pour cette note est de rejoindre le cas connexe d'un papier précédent, Bettaïeb, (2003). Autrement dit, de retrouver une analogue à notre classification des représentations irréductibles tempérées de $G$, lorsque $G$ est connexe. C'est-à-dire que toute représentation irréductible tempérée de $G$ est irréductiblement induite d'une limite de série discrète d'un sous-groupe de Lévi cuspidal de $G$.
Soit $G$ l'ensemble des points rationnels d'un groupe algébrique réductif non connexe $p$-adique de caractéristique $0$. Soit $G^{0}$ la composante neutre de $G$. On suppose que $G/G^{0}$ est commutatif et fini. Notre motivation pour cette note est de rejoindre le cas connexe d'un papier précédent, Bettaïeb, (2003). Autrement dit, de retrouver une analogue à notre classification des représentations irréductibles tempérées de $G$, lorsque $G$ est connexe. C'est-à-dire que toute représentation irréductible tempérée de $G$ est irréductiblement induite d'une limite de série discrète d'un sous-groupe de Lévi cuspidal de $G$.
DOI : 10.21136/MB.2017.0043-13
Classification : 11E95, 20G05, 20G15
Mots-clés : reductive $p$-adic group; tempered representation
@article{10_21136_MB_2017_0043_13,
     author = {Betta{\"\i}eb, Karem},
     title = {Sur les repr\'esentations temp\'er\'ees d'un groupe r\'eductif $p$-adique non connexe: {Cas} o\`u $G/G^{0}$ est commutatif et fini},
     journal = {Mathematica Bohemica},
     pages = {387--403},
     year = {2017},
     volume = {142},
     number = {4},
     doi = {10.21136/MB.2017.0043-13},
     mrnumber = {3739025},
     zbl = {06819593},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0043-13/}
}
TY  - JOUR
AU  - Bettaïeb, Karem
TI  - Sur les représentations tempérées d'un groupe réductif $p$-adique non connexe: Cas où $G/G^{0}$ est commutatif et fini
JO  - Mathematica Bohemica
PY  - 2017
SP  - 387
EP  - 403
VL  - 142
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0043-13/
DO  - 10.21136/MB.2017.0043-13
LA  - fr
ID  - 10_21136_MB_2017_0043_13
ER  - 
%0 Journal Article
%A Bettaïeb, Karem
%T Sur les représentations tempérées d'un groupe réductif $p$-adique non connexe: Cas où $G/G^{0}$ est commutatif et fini
%J Mathematica Bohemica
%D 2017
%P 387-403
%V 142
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0043-13/
%R 10.21136/MB.2017.0043-13
%G fr
%F 10_21136_MB_2017_0043_13
Bettaïeb, Karem. Sur les représentations tempérées d'un groupe réductif $p$-adique non connexe: Cas où $G/G^{0}$ est commutatif et fini. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 387-403. doi: 10.21136/MB.2017.0043-13

[1] Arthur, J.: On elliptic tempered characters. Acta Math. 171 (1993), 73-138. | DOI | MR | JFM

[2] Bernstein, I. N., Zelevinsky, A. V.: Induced representations of reductive $p$-adic groups I. Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441-472. | DOI | MR | JFM

[3] eb, K. Bettaï: On the tempered representations of a $p$-adic reductive group. C. R. Math. Acad. Sci., Soc. R. Can. 26 (2004), 1-3 (in French). | MR | JFM

[4] eb, K. Bettaï: Classification of tempered representations of a $p$-adic group. Can. J. Math. 55 (2003), 1121-1133 (in French). | DOI | MR | JFM

[5] Clozel, L.: Invariant harmonic analysis on the Schwartz space of a reductive $p$-adic group. Harmonic Analysis on Reductive Groups Proc. Conf., Bowdoin College, Brunswick, 1989. Progress in Mathematics. Vol 101 (W. Barker et al., eds). Birkhäuser, Boston (1991), 101-121. | DOI | MR | JFM

[6] Clozel, L.: Characters of non-connected reductive $p$-adic groups. Can. J. Math. 39 (1987), 149-167. | DOI | MR | JFM

[7] Goldberg, D., Herb, R.: Some results on the admissible representations of non-connected $p$-adic groups. Ann. Sci. Éc. Norm. Supér. (4) 30 (1997), 97-146. | DOI | MR | JFM

[8] Harish-Chandra: Supertempered distributions on real reductive groups. Adv. Math., Suppl. Stud. 8 (1983), 139-158. | MR | JFM

[9] Herb, R. A.: Supertempered virtual characters. Compos. Math. 93 (1994), 139-154. | MR | JFM

[10] Kazhdan, D.: Cuspidal geometry of $p$-adic groups. J. Anal. Math. 47 (1986), 1-36. | DOI | MR | JFM

[11] Silberger, A. J.: Introduction to Harmonic Analysis on Reductive $p$-adic Groups. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973. Mathematical Notes 23. Princeton University Press, Princeton, and University of Tokyo Press, Tokyo (1979). | DOI | MR | JFM

Cité par Sources :