Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 309-321
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.
We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.
DOI : 10.21136/MB.2017.0041-16
Classification : 26A33, 34A08, 34A60, 34B10, 34B15
Keywords: differential inclusion; Caputo fractional derivative; nonlocal boundary conditions; Banach space; existence; fixed point; measure of noncompactness
@article{10_21136_MB_2017_0041_16,
     author = {Seba, Djamila},
     title = {Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in {Banach} spaces},
     journal = {Mathematica Bohemica},
     pages = {309--321},
     year = {2017},
     volume = {142},
     number = {3},
     doi = {10.21136/MB.2017.0041-16},
     mrnumber = {3695469},
     zbl = {06770148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0041-16/}
}
TY  - JOUR
AU  - Seba, Djamila
TI  - Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
JO  - Mathematica Bohemica
PY  - 2017
SP  - 309
EP  - 321
VL  - 142
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0041-16/
DO  - 10.21136/MB.2017.0041-16
LA  - en
ID  - 10_21136_MB_2017_0041_16
ER  - 
%0 Journal Article
%A Seba, Djamila
%T Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
%J Mathematica Bohemica
%D 2017
%P 309-321
%V 142
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0041-16/
%R 10.21136/MB.2017.0041-16
%G en
%F 10_21136_MB_2017_0041_16
Seba, Djamila. Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 309-321. doi: 10.21136/MB.2017.0041-16

[1] Agarwal, R. P., Ahmad, B.: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62 (2011), 1200-1214. | DOI | MR | JFM

[2] Agarwal, R. P., Benchohra, M., Seba, D.: On the application of measure of noncompactness to the existence of solutions for fractional differential equations. Result. Math. 55 (2009), 221-230. | DOI | MR | JFM

[3] Ahmad, B., Alsaedi, A.: Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions. Bound. Value Probl. (electronic only) (2012), Article ID 124, 10 pages. | DOI | MR | JFM

[4] Ahmad, B., Nieto, J. J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 3291-3298. | DOI | MR | JFM

[5] Akhmerov, R. R., Kamenskiĭ, M. I., Potapov, A. S., Rodkina, A. E., Sadovskiĭ, B. N.: Measures of Noncompactness and Condensing Operators. Operator Theory: Advances and Applications 55. Birkhäuser, Basel (1992). | DOI | MR | JFM

[6] Alsaedi, A., Ntouyas, S. K., Ahmad, B.: Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multiterm fractional integral boundary conditions. Abstr. Appl. Anal. 2013 (2013), Article ID 869837, 17 pages. | DOI | MR | JFM

[7] Alsulami, H. H.: Application of fixed point theorems for multivalued maps to anti-periodic problems of fractional differential inclusions. Filomat 28 (2014), 91-98. | DOI | MR

[8] Balachandran, K., Park, J. Y., Trujillo, J. J.: Controllability of nonlinear fractional dynamical systems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 1919-1926. | DOI | MR | JFM

[9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). | MR | JFM

[10] Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. 12 (2008), 419-427. | MR | JFM

[11] Benchohra, M., Henderson, J., Seba, D.: Boundary value problems for fractional differential inclusions in Banach spaces. Fract. Differ. Calc. 2 (2012), 99-108. | DOI | MR

[12] Benchohra, M., N'Guérékata, G. M., Seba, D.: Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order. Cubo 12 (2010), 35-48. | DOI | MR | JFM

[13] Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51 (2016), 48-54. | DOI | MR | JFM

[14] Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Mathematics and Its Applications 373. Kluwer Academic Publishers, Dordrecht (1996). | DOI | MR | JFM

[15] Han, J., Liu, Y., Zhao, J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations. Appl. Math. Comput. 218 (2012), 5002-5009. | DOI | MR | JFM

[16] Heinz, H.-P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. | DOI | MR | JFM

[17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM

[18] Lakshmikantham, V., Leela, S., Devi, J. Vasundhara: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009). | JFM

[19] Lasota, A., Opial, Z.: An application of the Kakutani---Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. | MR | JFM

[20] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., Theory Methods Appl. 4 (1980), 985-999. | DOI | MR | JFM

[21] Ntouyas, S. K.: Existence results for nonlocal boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions. Discuss. Math., Differ. Incl. Control Optim. 33 (2013), 17-39. | DOI | MR | JFM

[22] Ntouyas, S. K., Tariboon, J.: Nonlocal boundary value problems for Langevin fractional differential inclusions with Riemann-Liouville fractional integral boundary conditions. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 123-141. | MR | JFM

[23] O'Regan, D., Precup, R.: Fixed point theorems for set-valued maps and existence principles for integral inclusions. J. Math. Anal. Appl. 245 (2000), 594-612. | DOI | MR | JFM

[24] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5 (2002), 367-386; Correction: "Geometric and physical interpretation of fractional integration and fractional differentiation'', ibid. {\it 6} (2003), 109-110. | MR | JFM

[25] Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro Machado: Advances in Fractional Calculus---Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007). | DOI | MR | JFM

[26] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM

[27] Szufla, S.: On the application of measure of noncompactness to existence theorems. Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. | MR | JFM

[28] Xu, J., Wei, Z., Dong, W.: Uniqueness of positive solutions for a class of fractional boundary value problems. Appl. Math. Lett. 25 (2012), 590-593. | DOI | MR | JFM

Cité par Sources :