Relatively pseudocomplemented posets
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 89-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided.
DOI : 10.21136/MB.2017.0037-16
Classification : 06A06, 06A11, 06D15
Keywords: relatively pseudocomplemented poset; join-semilattice; distributive poset
@article{10_21136_MB_2017_0037_16,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Relatively pseudocomplemented posets},
     journal = {Mathematica Bohemica},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {143},
     number = {1},
     year = {2018},
     doi = {10.21136/MB.2017.0037-16},
     mrnumber = {3778051},
     zbl = {06861593},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Relatively pseudocomplemented posets
JO  - Mathematica Bohemica
PY  - 2018
SP  - 89
EP  - 97
VL  - 143
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/
DO  - 10.21136/MB.2017.0037-16
LA  - en
ID  - 10_21136_MB_2017_0037_16
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Relatively pseudocomplemented posets
%J Mathematica Bohemica
%D 2018
%P 89-97
%V 143
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/
%R 10.21136/MB.2017.0037-16
%G en
%F 10_21136_MB_2017_0037_16
Chajda, Ivan; Länger, Helmut. Relatively pseudocomplemented posets. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 89-97. doi : 10.21136/MB.2017.0037-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/

Cité par Sources :