Relatively pseudocomplemented posets
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 89-97
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided.
DOI :
10.21136/MB.2017.0037-16
Classification :
06A06, 06A11, 06D15
Keywords: relatively pseudocomplemented poset; join-semilattice; distributive poset
Keywords: relatively pseudocomplemented poset; join-semilattice; distributive poset
@article{10_21136_MB_2017_0037_16,
author = {Chajda, Ivan and L\"anger, Helmut},
title = {Relatively pseudocomplemented posets},
journal = {Mathematica Bohemica},
pages = {89--97},
publisher = {mathdoc},
volume = {143},
number = {1},
year = {2018},
doi = {10.21136/MB.2017.0037-16},
mrnumber = {3778051},
zbl = {06861593},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/}
}
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Relatively pseudocomplemented posets JO - Mathematica Bohemica PY - 2018 SP - 89 EP - 97 VL - 143 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/ DO - 10.21136/MB.2017.0037-16 LA - en ID - 10_21136_MB_2017_0037_16 ER -
Chajda, Ivan; Länger, Helmut. Relatively pseudocomplemented posets. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 89-97. doi: 10.21136/MB.2017.0037-16
Cité par Sources :