Relatively pseudocomplemented posets
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 89-97
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided.
We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided.
DOI : 10.21136/MB.2017.0037-16
Classification : 06A06, 06A11, 06D15
Keywords: relatively pseudocomplemented poset; join-semilattice; distributive poset
@article{10_21136_MB_2017_0037_16,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Relatively pseudocomplemented posets},
     journal = {Mathematica Bohemica},
     pages = {89--97},
     year = {2018},
     volume = {143},
     number = {1},
     doi = {10.21136/MB.2017.0037-16},
     mrnumber = {3778051},
     zbl = {06861593},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Relatively pseudocomplemented posets
JO  - Mathematica Bohemica
PY  - 2018
SP  - 89
EP  - 97
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/
DO  - 10.21136/MB.2017.0037-16
LA  - en
ID  - 10_21136_MB_2017_0037_16
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Relatively pseudocomplemented posets
%J Mathematica Bohemica
%D 2018
%P 89-97
%V 143
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0037-16/
%R 10.21136/MB.2017.0037-16
%G en
%F 10_21136_MB_2017_0037_16
Chajda, Ivan; Länger, Helmut. Relatively pseudocomplemented posets. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 89-97. doi: 10.21136/MB.2017.0037-16

[1] Balbes, R.: On free pseudo-complemented and relatively pseudo-complemented semi-lattices. Fundam. Math. 78 (1973), 119-131. | DOI | MR | JFM

[2] Chajda, I.: An extension of relative pseudocomplementation to non-distributive lattices. Acta Sci. Math. 69 (2003), 491-496. | MR | JFM

[3] Chajda, I.: Relatively pseudocomplemented directoids. Commentat. Math. Univ. Carol. 50 (2009), 349-357. | MR | JFM

[4] Chajda, I.: Pseudocomplemented and Stone posets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51 (2012), 29-34. | MR | JFM

[5] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). | MR | JFM

[6] Chajda, I., Kolařík, M., Švrček, F.: Properties of relatively pseudocomplemented directoids. Math. Bohem. 136 (2011), 9-23. | MR | JFM

[7] Chajda, I., Länger, H.: Directoids. An Algebraic Approach to Ordered Sets. Research and Exposition in Mathematics 32. Heldermann, Lemgo (2011). | MR | JFM

[8] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407-423. | DOI | MR | JFM

[9] C\=ırulis, J.: Implication in sectionally pseudocomplemented posets. Acta Sci. Math. 74 (2008), 477-491. | MR | JFM

[10] Köhler, P.: Brouwerian semilattices. Trans. AMS 268 (1981), 103-126. | DOI | MR | JFM

[11] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 27 (1988), 13-23. | MR | JFM

[12] Nemitz, W. C.: Implicative semi-lattices. Trans. AMS 117 (1965), 128-142. | DOI | MR | JFM

[13] Venkatanarasimhan, P. V.: Pseudo-complements in posets. Proc. AMS 28 (1971), 9-17. | DOI | MR | JFM

Cité par Sources :