On graceful colorings of trees
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 57-73
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A proper coloring $c\colon V(G)\to \{1, 2,\ldots , k\}$, $k\ge 2$ of a graph $G$ is called a graceful $k$-coloring if the induced edge coloring $c'\colon E(G) \to \{1, 2, \ldots , k-1\}$ defined by $c'(uv)=|c(u)-c(v)|$ for each edge $uv$ of $G$ is also proper. The minimum integer $k$ for which $G$ has a graceful $k$-coloring is the graceful chromatic number $\chi _g(G)$. It is known that if $T$ is a tree with maximum degree $\Delta $, then $\chi _g(T) \le \lceil \frac 5{3}\Delta \rceil $ and this bound is best possible. It is shown for each integer $\Delta \ge 2$ that there is an infinite class of trees $T$ with maximum degree $\Delta $ such that $\chi _g(T)=\lceil \frac 5{3}\Delta \rceil $. In particular, we investigate for each integer $\Delta \ge 2$ a class of rooted trees $T_{\Delta , h}$ with maximum degree $\Delta $ and height $h$. The graceful chromatic number of $T_{\Delta , h}$ is determined for each integer $\Delta \ge 2$ when $1 \le h \le 4$. Furthermore, it is shown for each $\Delta \ge 2$ that $\lim _{h \to \infty } \chi _g(T_{\Delta , h}) = \lceil \frac 5{3}\Delta \rceil $.
DOI :
10.21136/MB.2017.0035-15
Classification :
05C05, 05C15, 05C78
Keywords: graceful coloring; graceful chromatic numbers; tree
Keywords: graceful coloring; graceful chromatic numbers; tree
@article{10_21136_MB_2017_0035_15,
author = {English, Sean and Zhang, Ping},
title = {On graceful colorings of trees},
journal = {Mathematica Bohemica},
pages = {57--73},
publisher = {mathdoc},
volume = {142},
number = {1},
year = {2017},
doi = {10.21136/MB.2017.0035-15},
mrnumber = {3619987},
zbl = {06738570},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0035-15/}
}
TY - JOUR AU - English, Sean AU - Zhang, Ping TI - On graceful colorings of trees JO - Mathematica Bohemica PY - 2017 SP - 57 EP - 73 VL - 142 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0035-15/ DO - 10.21136/MB.2017.0035-15 LA - en ID - 10_21136_MB_2017_0035_15 ER -
English, Sean; Zhang, Ping. On graceful colorings of trees. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 57-73. doi: 10.21136/MB.2017.0035-15
Cité par Sources :