Keywords: tri-quadratic functional equation; Lipschitz space; stability
@article{10_21136_MB_2017_0028_16,
author = {Nikoufar, Ismail},
title = {Approximate tri-quadratic functional equations via {Lipschitz} conditions},
journal = {Mathematica Bohemica},
pages = {337--344},
year = {2017},
volume = {142},
number = {4},
doi = {10.21136/MB.2017.0028-16},
mrnumber = {3739021},
zbl = {06819589},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0028-16/}
}
TY - JOUR AU - Nikoufar, Ismail TI - Approximate tri-quadratic functional equations via Lipschitz conditions JO - Mathematica Bohemica PY - 2017 SP - 337 EP - 344 VL - 142 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0028-16/ DO - 10.21136/MB.2017.0028-16 LA - en ID - 10_21136_MB_2017_0028_16 ER -
Nikoufar, Ismail. Approximate tri-quadratic functional equations via Lipschitz conditions. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 337-344. doi: 10.21136/MB.2017.0028-16
[1] Czerwik, S., Dłutek, K.: Stability of the quadratic functional equation in Lipschitz spaces. J. Math. Anal. Appl. 293 (2004), 79-88. | DOI | MR | JFM
[2] Ebadian, A., Ghobadipour, N., Nikoufar, I., Gordji, M. Eshaghi: Approximation of the cubic functional equations in Lipschitz spaces. Anal. Theory Appl. 30 (2014), 354-362. | DOI | MR | JFM
[3] Jung, S.-M., Sahoo, P. K.: Hyers-Ulam stability of the quadratic equation of Pexider type. J. Korean Math. Soc. 38 (2001), 645-656. | MR | JFM
[4] Lee, J. R., Jang, S.-Y., Park, C., Shin, D. Y.: Fuzzy stability of quadratic functional equations. Adv. Difference Equ. 2010 (2010), Article ID 412160, 16 pages. | DOI | MR | JFM
[5] Nikoufar, I.: Lipschitz approximation of the $n$-quadratic functional equations. Mathematica (Cluj) - Tome 57 (2015), 67-74. | MR
[6] Nikoufar, I.: Quartic functional equations in Lipschitz spaces. Rend. Circ. Mat. Palermo, Ser. 2 64 (2015), 171-176. | DOI | MR | JFM
[7] Nikoufar, I.: Erratum to: Quartic functional equations in Lipschitz spaces. Rend. Circ. Mat. Palermo, Ser. 2 65 (2016), 345-350. | DOI | MR | JFM
[8] Nikoufar, I.: Lipschitz criteria for bi-quadratic functional equations. Commun. Korean Math. Soc 31 (2016), 819-825. | DOI | MR | Zbl
[9] Park, C.-G.: On the stability of the quadratic mapping in Banach modules. J. Math. Anal. Appl. 276 (2002), 135-144. | DOI | MR | JFM
[10] Park, W.-G., Bae, J.-H.: Approximate behavior of bi-quadratic mappings in quasinormed spaces. J. Inequal. Appl. (2010), Article ID 472721, 8 pages. | DOI | MR | JFM
[11] Skof, F.: Local properties and approximations of operators. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 Italian. | DOI | MR | JFM
[12] Tabor, J.: Lipschitz stability of the Cauchy and Jensen equations. Result. Math. 32 (1997), 133-144. | DOI | MR | JFM
[13] Tabor, J.: Superstability of the Cauchy, Jensen and isometry equations. Result. Math. 35 (1999), 355-379. | DOI | MR | JFM
Cité par Sources :