Keywords: analytic function with negative coefficients; univalent function; extreme point; order of convolution consistence; starlikeness; convexity
@article{10_21136_MB_2017_0019_15,
author = {S\u{a}l\u{a}gean, Grigore S. and Venter, Adela},
title = {On the order of convolution consistence of the analytic functions with negative coefficients},
journal = {Mathematica Bohemica},
pages = {381--386},
year = {2017},
volume = {142},
number = {4},
doi = {10.21136/MB.2017.0019-15},
mrnumber = {3739024},
zbl = {06819592},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0019-15/}
}
TY - JOUR AU - Sălăgean, Grigore S. AU - Venter, Adela TI - On the order of convolution consistence of the analytic functions with negative coefficients JO - Mathematica Bohemica PY - 2017 SP - 381 EP - 386 VL - 142 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0019-15/ DO - 10.21136/MB.2017.0019-15 LA - en ID - 10_21136_MB_2017_0019_15 ER -
%0 Journal Article %A Sălăgean, Grigore S. %A Venter, Adela %T On the order of convolution consistence of the analytic functions with negative coefficients %J Mathematica Bohemica %D 2017 %P 381-386 %V 142 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0019-15/ %R 10.21136/MB.2017.0019-15 %G en %F 10_21136_MB_2017_0019_15
Sălăgean, Grigore S.; Venter, Adela. On the order of convolution consistence of the analytic functions with negative coefficients. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 381-386. doi: 10.21136/MB.2017.0019-15
[1] Bălăeţi, C. M.: An integral operator associated with differential superordinations. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 17 (2009), 37-44. | MR | JFM
[2] Bednarz, U., Sokół, J.: On order convolution consistence of the analytic functions. Stud. Univ. Babeş-Bolyai Math. 55 (2010), 45-51. | MR | JFM
[3] Gupta, V. P., Jain, P. K.: Certain classes of univalent functions with negative coefficients. Bull. Aust. Math. Soc. 14 (1976), 409-416. | DOI | MR | JFM
[4] Sălăgean, G. S.: Subclasses of univalent functions. Complex Analysis, Proceedings 5th Rom.-Finn. Semin., Bucharest 1981, Part 1 (C. Andreian Cazacu at al., eds.) Lecture Notes in Math. 1013. Springer, Berlin (1983), 362-372. | DOI | MR | JFM
[5] Sălăgean, G. S.: Classes of univalent functions with two fixed points. Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1984 Univ. "Babeş-Bolyai'' (1984), 181-184. | MR
[6] Sălăgean, G. S.: On univalent functions with negative coefficients. Prepr., "Babeş-Bolyai'' Univ., Fac. Math. Phys., Res. Semin. 7 (1991), 47-54. | MR | JFM
[7] Schild, A., Silverman, H.: Convolutions of univalent functions with negative coefficients. Ann. Univ. Mariae Curie-Skłodowska, Sect. A (1975) 29 (1977), 99-107. | MR | JFM
[8] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. | DOI | MR | JFM
Cité par Sources :