On the order of convolution consistence of the analytic functions with negative coefficients
Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 381-386
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Making use of a modified Hadamard product, or convolution, of analytic functions with negative coefficients, combined with an integral operator, we study when a given analytic function is in a given class. Following an idea of U. Bednarz and J. Sokół, we define the order of convolution consistence of three classes of functions and determine a given analytic function for certain classes of analytic functions with negative coefficients.
Making use of a modified Hadamard product, or convolution, of analytic functions with negative coefficients, combined with an integral operator, we study when a given analytic function is in a given class. Following an idea of U. Bednarz and J. Sokół, we define the order of convolution consistence of three classes of functions and determine a given analytic function for certain classes of analytic functions with negative coefficients.
DOI : 10.21136/MB.2017.0019-15
Classification : 30C45, 30C50
Keywords: analytic function with negative coefficients; univalent function; extreme point; order of convolution consistence; starlikeness; convexity
@article{10_21136_MB_2017_0019_15,
     author = {S\u{a}l\u{a}gean, Grigore S. and Venter, Adela},
     title = {On the order of convolution consistence of the analytic functions with negative coefficients},
     journal = {Mathematica Bohemica},
     pages = {381--386},
     year = {2017},
     volume = {142},
     number = {4},
     doi = {10.21136/MB.2017.0019-15},
     mrnumber = {3739024},
     zbl = {06819592},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0019-15/}
}
TY  - JOUR
AU  - Sălăgean, Grigore S.
AU  - Venter, Adela
TI  - On the order of convolution consistence of the analytic functions with negative coefficients
JO  - Mathematica Bohemica
PY  - 2017
SP  - 381
EP  - 386
VL  - 142
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0019-15/
DO  - 10.21136/MB.2017.0019-15
LA  - en
ID  - 10_21136_MB_2017_0019_15
ER  - 
%0 Journal Article
%A Sălăgean, Grigore S.
%A Venter, Adela
%T On the order of convolution consistence of the analytic functions with negative coefficients
%J Mathematica Bohemica
%D 2017
%P 381-386
%V 142
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0019-15/
%R 10.21136/MB.2017.0019-15
%G en
%F 10_21136_MB_2017_0019_15
Sălăgean, Grigore S.; Venter, Adela. On the order of convolution consistence of the analytic functions with negative coefficients. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 381-386. doi: 10.21136/MB.2017.0019-15

[1] Bălăeţi, C. M.: An integral operator associated with differential superordinations. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 17 (2009), 37-44. | MR | JFM

[2] Bednarz, U., Sokół, J.: On order convolution consistence of the analytic functions. Stud. Univ. Babeş-Bolyai Math. 55 (2010), 45-51. | MR | JFM

[3] Gupta, V. P., Jain, P. K.: Certain classes of univalent functions with negative coefficients. Bull. Aust. Math. Soc. 14 (1976), 409-416. | DOI | MR | JFM

[4] Sălăgean, G. S.: Subclasses of univalent functions. Complex Analysis, Proceedings 5th Rom.-Finn. Semin., Bucharest 1981, Part 1 (C. Andreian Cazacu at al., eds.) Lecture Notes in Math. 1013. Springer, Berlin (1983), 362-372. | DOI | MR | JFM

[5] Sălăgean, G. S.: Classes of univalent functions with two fixed points. Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1984 Univ. "Babeş-Bolyai'' (1984), 181-184. | MR

[6] Sălăgean, G. S.: On univalent functions with negative coefficients. Prepr., "Babeş-Bolyai'' Univ., Fac. Math. Phys., Res. Semin. 7 (1991), 47-54. | MR | JFM

[7] Schild, A., Silverman, H.: Convolutions of univalent functions with negative coefficients. Ann. Univ. Mariae Curie-Skłodowska, Sect. A (1975) 29 (1977), 99-107. | MR | JFM

[8] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. | DOI | MR | JFM

Cité par Sources :