On oscillatory nonlinear fourth-order difference equations with delays
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 25-40
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form \begin {equation*} \Delta ^{2}(r(n)\Delta ^{2}(y(n)+p(n)y(n-m)))+ q(n)G(y(n-k))=0 \end {equation*} is studied under the assumption \begin {equation*} \sum _{n=0}^{\infty }\frac {n}{r(n)} \infty . \end {equation*} New oscillation criteria have been established which generalize some of the existing results in the literature.
In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form \begin {equation*} \Delta ^{2}(r(n)\Delta ^{2}(y(n)+p(n)y(n-m)))+ q(n)G(y(n-k))=0 \end {equation*} is studied under the assumption \begin {equation*} \sum _{n=0}^{\infty }\frac {n}{r(n)} \infty . \end {equation*} New oscillation criteria have been established which generalize some of the existing results in the literature.
DOI : 10.21136/MB.2017.0018-16
Classification : 39A10, 39A12
Keywords: oscillation; nonlinear; delay; neutral functional difference equation
@article{10_21136_MB_2017_0018_16,
     author = {Tripathy, Arun K.},
     title = {On oscillatory nonlinear fourth-order difference equations with delays},
     journal = {Mathematica Bohemica},
     pages = {25--40},
     year = {2018},
     volume = {143},
     number = {1},
     doi = {10.21136/MB.2017.0018-16},
     mrnumber = {3778048},
     zbl = {06861590},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/}
}
TY  - JOUR
AU  - Tripathy, Arun K.
TI  - On oscillatory nonlinear fourth-order difference equations with delays
JO  - Mathematica Bohemica
PY  - 2018
SP  - 25
EP  - 40
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/
DO  - 10.21136/MB.2017.0018-16
LA  - en
ID  - 10_21136_MB_2017_0018_16
ER  - 
%0 Journal Article
%A Tripathy, Arun K.
%T On oscillatory nonlinear fourth-order difference equations with delays
%J Mathematica Bohemica
%D 2018
%P 25-40
%V 143
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/
%R 10.21136/MB.2017.0018-16
%G en
%F 10_21136_MB_2017_0018_16
Tripathy, Arun K. On oscillatory nonlinear fourth-order difference equations with delays. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 25-40. doi: 10.21136/MB.2017.0018-16

[1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications. Pure and Applied Mathematics 228. Marcel Dekker, New York (2000). | MR | JFM

[2] Agarwal, R. P., Grace, S. R., Wong, P. J. Y.: Oscillation of fourth order nonlinear difference equations. Int. J. Difference Equ. 2 (2007), 123-137. | MR

[3] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel (2001). | DOI | MR | JFM

[4] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003). | DOI | MR | JFM

[5] Graef, J. R., Miciano, A., Spikes, P., Sundaram, P., Thandapani, E.: Oscillatory and asymptotic behaviour of solutions of nonlinear neutral-type difference equations. J. Aust. Math. Soc., Ser. B 38 (1996), 163-171. | DOI | MR | JFM

[6] Graef, J. R., Thandapani, E.: Oscillatory and asymptotic behaviour of fourth order nonlinear delay difference equations. Fasc. Math. 31 (2001), 23-36. | MR | JFM

[7] Gyori, I., Ladas, G.: Oscillation Theory for Delay Differential Equations with Applications. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). | MR | JFM

[8] Migda, M.: Asymptotic properties of nonoscillatory solutions of higher order neutral difference equations. Opusc. Math. 26 (2006), 507-514. | MR | JFM

[9] Migda, M., Migda, J.: Oscillatory and asymptotic properties of solutions of even order neutral difference equations. J. Difference Equ. Appl. 15 (2009), 1077-1084. | DOI | MR | JFM

[10] Parhi, N., Tripathy, A. K.: Oscillation of a class of nonlinear neutral difference equations of higher order. J. Math. Anal. Appl. 284 (2003), 756-774. | DOI | MR | Zbl

[11] Thandapani, E., Arockiasamy, I. M.: Oscillatory and asymptotic behaviour of fourth order nonlinear neutral delay difference equations. Indian J. Pure Appl. Math. 32 (2001), 109-123. | MR | JFM

[12] Thandapani, E., Sundaram, P., Graef, J. R., Miciano, A., Spikes, P.: Classification of non-oscillatory solutions of higher order neutral type difference equations. Arch. Math. (Brno) 31 (1995), 263-277. | MR | JFM

[13] Tripathy, A. K.: Oscillation of fourth-order nonlinear neutral difference equations II. Math. Slovaca 58 (2008), 581-604. | MR | JFM

[14] Tripathy, A. K.: New oscillation criteria for fourth order nonlinear neutral difference equations. Adv. Dyn. Syst. Appl 8 (2013), 387-399. | MR

Cité par Sources :