On oscillatory nonlinear fourth-order difference equations with delays
Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 25-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form \begin {equation*} \Delta ^{2}(r(n)\Delta ^{2}(y(n)+p(n)y(n-m)))+ q(n)G(y(n-k))=0 \end {equation*} is studied under the assumption \begin {equation*} \sum _{n=0}^{\infty }\frac {n}{r(n)} \infty . \end {equation*} New oscillation criteria have been established which generalize some of the existing results in the literature.
DOI : 10.21136/MB.2017.0018-16
Classification : 39A10, 39A12
Keywords: oscillation; nonlinear; delay; neutral functional difference equation
@article{10_21136_MB_2017_0018_16,
     author = {Tripathy, Arun K.},
     title = {On oscillatory nonlinear fourth-order difference equations with delays},
     journal = {Mathematica Bohemica},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {143},
     number = {1},
     year = {2018},
     doi = {10.21136/MB.2017.0018-16},
     mrnumber = {3778048},
     zbl = {06861590},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/}
}
TY  - JOUR
AU  - Tripathy, Arun K.
TI  - On oscillatory nonlinear fourth-order difference equations with delays
JO  - Mathematica Bohemica
PY  - 2018
SP  - 25
EP  - 40
VL  - 143
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/
DO  - 10.21136/MB.2017.0018-16
LA  - en
ID  - 10_21136_MB_2017_0018_16
ER  - 
%0 Journal Article
%A Tripathy, Arun K.
%T On oscillatory nonlinear fourth-order difference equations with delays
%J Mathematica Bohemica
%D 2018
%P 25-40
%V 143
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/
%R 10.21136/MB.2017.0018-16
%G en
%F 10_21136_MB_2017_0018_16
Tripathy, Arun K. On oscillatory nonlinear fourth-order difference equations with delays. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 25-40. doi : 10.21136/MB.2017.0018-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0018-16/

Cité par Sources :