Keywords: distance-based graph invariant; $k$-tree; simplicial vertex; sharp bound
@article{10_21136_MB_2017_0011_16,
author = {Zhang, Minjie and Li, Shuchao},
title = {Extremal properties of distance-based graph invariants for $k$-trees},
journal = {Mathematica Bohemica},
pages = {41--66},
year = {2018},
volume = {143},
number = {1},
doi = {10.21136/MB.2017.0011-16},
mrnumber = {3778049},
zbl = {06861591},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0011-16/}
}
TY - JOUR AU - Zhang, Minjie AU - Li, Shuchao TI - Extremal properties of distance-based graph invariants for $k$-trees JO - Mathematica Bohemica PY - 2018 SP - 41 EP - 66 VL - 143 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0011-16/ DO - 10.21136/MB.2017.0011-16 LA - en ID - 10_21136_MB_2017_0011_16 ER -
%0 Journal Article %A Zhang, Minjie %A Li, Shuchao %T Extremal properties of distance-based graph invariants for $k$-trees %J Mathematica Bohemica %D 2018 %P 41-66 %V 143 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0011-16/ %R 10.21136/MB.2017.0011-16 %G en %F 10_21136_MB_2017_0011_16
Zhang, Minjie; Li, Shuchao. Extremal properties of distance-based graph invariants for $k$-trees. Mathematica Bohemica, Tome 143 (2018) no. 1, pp. 41-66. doi: 10.21136/MB.2017.0011-16
[1] Ali, P., Mukwembi, S., Munyira, S.: Degree distance and vertex-connectivity. Discrete Appl. Math. 161 (2013), 2802-2811. | DOI | MR | JFM
[2] Alizadeh, Y., Iranmanesh, A., Došlić, T.: Additively weighted Harary index of some composite graphs. Discrete Math. 313 (2013), 26-34. | DOI | MR | JFM
[3] Andrew, G. D., Gessel, I. M.: Counting unlabeled $k$-trees. J. Combin. Theory Ser. A 126 (2014), 177-193. | DOI | MR | JFM
[4] Azari, M., Iranmanesh, A.: Computing the eccentric-distance sum for graph operations. Discrete Appl. Math. 161 (2013), 2827-2840. | DOI | MR | JFM
[5] Azari, M., Iranmanesh, A.: Harary index of some nano-structures. MATCH Commun. Math. Comput. Chem. 71 (2014), 373-382. | MR | JFM
[6] Beineke, L. W., Pippert, R. E.: The number of labeled $k$-dimensional trees. J. Comb. Theory 6 (1969), 200-205. | DOI | MR | JFM
[7] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008). | MR | JFM
[8] Bucicovschi, O., Cioabă, S. M.: The minimum degree distance of graphs of given order and size. Discrete Appl. Math. 156 (2008), 3518-3521. | DOI | MR | JFM
[9] Deng, H., Krishnakumari, B., Venkatakrishnan, Y. B., Balachandran, S.: Multiplicatively weighted Harary index of graphs. J. Comb. Optim. 30 (2015), 1125-1137. | DOI | MR | JFM
[10] Dobrynin, A. A., Entringer, R., Gutman, I.: Wiener index of trees: Theory and applications. Acta Appl. Math. 66 (2001), 211-249. | DOI | MR | JFM
[11] Dobrynin, A. A., Kochetova, A. A.: Degree distance of a graph: A degree analogue of the Wiener index. J. Chem. Inf. Comput. Sci. 34 (1994), 1082-1086. | DOI
[12] Estes, J., Wei, B.: Sharp bounds of the Zagreb indices of $k$-trees. J. Comb. Optim. 27 (2014), 271-291. | DOI | MR | JFM
[13] Geng, X., Li, S., Zhang, M.: Extremal values on the eccentric distance sum of trees. Discrete Appl. Math. 161 (2013), 2427-2439. | DOI | MR | JFM
[14] Gupta, S., Singh, M., Madan, A. K.: Eccentric distance sum: A novel graph invariant for predicting biological and physical properties. J. Math. Anal. Appl. 275 (2002), 386-401. | DOI | MR | JFM
[15] Gutman, I.: A property of the Wiener number and its modifications. Indian J. Chem. A 36 (1997), 128-132.
[16] Gutman, I., Rada, J., Araujo, O.: The Wiener index of starlike trees and a related partial order. MATCH Commun. Math. Comput. Chem. 42 (2000), 145-154. | MR | JFM
[17] I, I. Gutman, Trinajstić, N.: Graph theory and molecular orbitals: Total $\phi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. | DOI
[18] Hemmasi, M., Iranmanesh, A., Tehranian, A.: Computing eccentric distance sum for an infinite family of fullerenes. MATCH Commun. Math. Comput. Chem. 71 (2014), 417-424. | MR | JFM
[19] Hua, H., Wang, M.: On Harary index and traceable graphs. MATCH Commun. Math. Comput. Chem. 70 (2013), 297-300. | MR | JFM
[20] Hua, H., Zhang, S.: On the reciprocal degree distance of graphs. Discrete Appl. Math. 160 (2012), 1152-1163. | DOI | MR | JFM
[21] Ivanciuc, O., Balaban, T. S., Balaban, A. T.: Design of topological indices IV: Reciprocal distance matrix, related local vertex invariants and topological indices. Applied Graph Theory and Discrete Mathematics in Chemistry. Proc. Symp., Saskatoon, 1991. Baltzer Science Publishers BV, Bussum, J. Math. Chem. {\it 12} (1993) P. G. Mezey et al. 309-318. | DOI | MR
[22] Klavžar, S., Gutman, I.: Wiener number of vertex-weighted graphs and a chemical application. Discrete Appl. Math. 80 (1997), 73-81. | DOI | MR | JFM
[23] Klavžar, S., Nadjafi-Arani, M. J.: Wiener index in weighted graphs via unification of $\Theta^*$-classes. European J. Combin. 36 (2014), 71-76. | DOI | MR | JFM
[24] Li, X.-X., Fan, Y.-Z.: The connectivity and the Harary index of a graph. Discrete Appl. Math. 181 (2015), 167-173. | DOI | MR | JFM
[25] Li, S., Meng, X.: Four edge-grafting theorems on the reciprocal degree distance of graphs and their applications. J. Comb. Optim. 30 (2015), 468-488. | DOI | MR | JFM
[26] Li, S., Song, Y.: On the sum of all distances in bipartite graphs. Discrete Appl. Math. 169 (2014), 176-185. | DOI | MR | JFM
[27] Li, S., Wu, Y.: On the extreme eccentric distance sum of graphs with some given parameters. Discrete Appl. Math. 206 (2016), 90-99. | DOI | MR | JFM
[28] Li, S., Wu, Y., Sun, L.: On the minimum eccentric distance sum of bipartite graphs with some given parameters. J. Math. Anal. Appl. 430 (2015), 1149-1162. | DOI | MR | JFM
[29] Maxová, J., Dubcová, M., Pavlíková, P., Turzík, D.: Which $k$-trees are cover-incomparability graphs?. Discrete Appl. Math. 167 (2014), 222-227. | DOI | MR | JFM
[30] Miao, L., Cao, Q., Cui, N., Pang, S.: On the extremal values of the eccentric distance sum of trees. Discrete Appl. Math. 186 (2015), 199-206. | DOI | MR | JFM
[31] Mukungunugwa, V., Mukwembi, S.: On eccentric distance sum and minimum degree. Discrete Appl. Math. 175 (2014), 55-61. | DOI | MR | JFM
[32] Mukwembi, S., Munyira, S.: Degree distance and minimum degree. Bull. Aust. Math. Soc. 87 (2013), 255-271. | DOI | MR | JFM
[33] Panholzer, A., Seitz, G.: Ancestors and descendants in evolving $k$-tree models. Random Struct. Algorithms 44 (2014), 465-489. | DOI | MR | JFM
[34] Plavšić, D., Nikolić, S., Trinajstić, N., Mihalić, Z.: On the Harary index for the characterization of chemical graphs. Applied Graph Theory and Discrete Mathematics in Chemistry. Proc. Symp., Saskatoon, 1991. Baltzer Science Publishers BV, Bussum, J. Math. Chem. {\it 12} (1993) P. G. Mezey et al. 235-250. | DOI | MR
[35] Song, L., Staton, W., Wei, B.: Independence polynomials of $k$-tree related graphs. Discrete Appl. Math. 158 (2010), 943-950. | DOI | MR | JFM
[36] Su, G., Xiong, L., Su, X., Chen, X.: Some results on the reciprocal sum-degree distance of graphs. J. Comb. Optim. 30 (2015), 435-446. | DOI | MR | JFM
[37] Tomescu, I., Kanwal, S.: Ordering connected graphs having small degree distances II. MATCH Commun. Math. Comput. Chem. 67 (2012), 425-437. | MR | JFM
[38] Wang, X., Zhai, M., Shu, J.: Upper bounds on the spectral radius of $k$-trees. Appl. Math., Ser. A 26 (2011), 209-214 Chinese. English summary. | DOI | MR | JFM
[39] Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947), 17-20. | DOI
[40] Xu, K.: Trees with the seven smallest and eight greatest Harary indices. Discrete Appl. Math. 160 (2012), 321-331. | DOI | MR | JFM
[41] Yu, G., Feng, L., Ilić, A.: On the eccentric distance sum of trees and unicyclic graphs. J. Math. Anal. Appl. 375 (2011), 99-107. | DOI | MR | JFM
[42] Zhang, M., Li, S.: On the signless Laplacian spectra of $k$-trees. Linear Algebra Appl. 467 (2015), 136-148 corrigendum ibid. 485 527-530 2015. | DOI | MR | JFM
Cité par Sources :