Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus
Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 189-200
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem $$ \begin {cases} \displaystyle -\biggl [M \biggl (\int _{Q}\dfrac {\vert u(x)-u(y)\vert ^{p}}{\vert x-y \vert ^{N+ps}} {\rm d}x {\rm d}y\biggr )\biggr ]^{p-1} (-\Delta )_{p}^{s}u=\lambda h(x,u) \quad \text {in}\ \Omega , \\ u=0 \quad \text {on}\ \mathbb {R}^N \setminus \Omega , \end {cases} $$ where $\Omega $ is an open bounded smooth domain of $\mathbb {R}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb {R}^{2N}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions.
We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem $$ \begin {cases} \displaystyle -\biggl [M \biggl (\int _{Q}\dfrac {\vert u(x)-u(y)\vert ^{p}}{\vert x-y \vert ^{N+ps}} {\rm d}x {\rm d}y\biggr )\biggr ]^{p-1} (-\Delta )_{p}^{s}u=\lambda h(x,u) \quad \text {in}\ \Omega , \\ u=0 \quad \text {on}\ \mathbb {R}^N \setminus \Omega , \end {cases} $$ where $\Omega $ is an open bounded smooth domain of $\mathbb {R}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb {R}^{2N}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions.
DOI : 10.21136/MB.2017.0010-17
Classification : 34A08, 35A15, 35B38
Keywords: existence results; genus theory; fractional $p$-Kirchhoff problem
@article{10_21136_MB_2017_0010_17,
     author = {Benhamida, Ghania and Moussaoui, Toufik},
     title = {Existence and multiplicity of solutions for a fractional $p${-Laplacian} problem of {Kirchhoff} type via {Krasnoselskii's} genus},
     journal = {Mathematica Bohemica},
     pages = {189--200},
     year = {2018},
     volume = {143},
     number = {2},
     doi = {10.21136/MB.2017.0010-17},
     mrnumber = {3831486},
     zbl = {06890414},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0010-17/}
}
TY  - JOUR
AU  - Benhamida, Ghania
AU  - Moussaoui, Toufik
TI  - Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus
JO  - Mathematica Bohemica
PY  - 2018
SP  - 189
EP  - 200
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0010-17/
DO  - 10.21136/MB.2017.0010-17
LA  - en
ID  - 10_21136_MB_2017_0010_17
ER  - 
%0 Journal Article
%A Benhamida, Ghania
%A Moussaoui, Toufik
%T Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus
%J Mathematica Bohemica
%D 2018
%P 189-200
%V 143
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0010-17/
%R 10.21136/MB.2017.0010-17
%G en
%F 10_21136_MB_2017_0010_17
Benhamida, Ghania; Moussaoui, Toufik. Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 189-200. doi: 10.21136/MB.2017.0010-17

[1] Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher order $p$-Kirchhoff problems. Commun. Contemp. Math. 16 (2014), Article ID 1450002, 43 pages. | DOI | MR | JFM

[2] Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differential Equations. Abel Symposia, vol. {\it 7} H. Holden et al. Springer, Heidelberg (2012), 37-52. | DOI | MR | JFM

[3] Castro, A.: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980), Spain.

[4] Chen, J., Cheng, B., Tang, X.: New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional $p$-Laplacian with sign-changing potential. Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. | DOI | MR

[5] Chen, W., Deng, S.: Existence of solutions for a Kirchhoff type problem involving the fractional $p$-Laplace operator. Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 87, 8 pages. | DOI | MR | JFM

[6] Cheng, K., Gao, Q.: Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R^{N}}$. Avaible at | arXiv

[7] Clarke, D. C.: A variant of the Lusternik-Schnirelman theory. Math. J., Indiana Univ. 22 (1972), 65-74. | DOI | MR | JFM

[8] Colasuonno, F., Pucci, P.: Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5962-5974. | DOI | MR | JFM

[9] Corrêa, F. J. S. A., Figueiredo, G. M.: On an elliptic equation of $p$-Kirchhoff-type via variational methods. Bull. Aust. Math. Soc. 74 (2006), 263-277. | DOI | MR | JFM

[10] Corrêa, F. J. S. A., Figueiredo, G. M.: On a $p$-Kirchhoff equation via Krasnoselskii's genus. Appl. Math. Lett. 22 (2009), 819-822. | DOI | MR | JFM

[11] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573. | DOI | MR | JFM

[12] Dreher, M.: The Kirchhoff equation for the $p$-Laplacian. Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. | MR | JFM

[13] Goyal, S., Sreenadh, K.: Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions. Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. | DOI | MR | JFM

[14] Kavian, O.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Mathématiques et Applications. Springer, Paris (1993). | MR | JFM

[15] Krasnoselsk'ii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). | MR | JFM

[16] Bisci, G. Molica, Radulescu, V. D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). | DOI | MR | JFM

[17] Ourraoui, A.: On a $p$-Kirchhoff problem involving a critical nonlinearity. C. R. Math., Acad. Sci. Paris 352 (2014), 295-298. | DOI | MR | JFM

[18] Peral, I.: Multiplicity of solutions for the $p$-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997).

[19] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). | DOI | MR | JFM

[20] Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389 (2012), 887-898. | DOI | MR | JFM

[21] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367 (2015), 67-102. | DOI | MR | JFM

[22] Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007), 67-112. | DOI | MR | JFM

[23] Wang, L., Zhang, B.: Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional $p$-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. | MR | JFM

[24] Zhang, L., Chen, Y.: Infinitely many solutions for sublinear indefinite nonlocal elliptic equations perturbed from symmetry. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. | DOI | MR | JFM

Cité par Sources :