Keywords: existence results; genus theory; fractional $p$-Kirchhoff problem
@article{10_21136_MB_2017_0010_17,
author = {Benhamida, Ghania and Moussaoui, Toufik},
title = {Existence and multiplicity of solutions for a fractional $p${-Laplacian} problem of {Kirchhoff} type via {Krasnoselskii's} genus},
journal = {Mathematica Bohemica},
pages = {189--200},
year = {2018},
volume = {143},
number = {2},
doi = {10.21136/MB.2017.0010-17},
mrnumber = {3831486},
zbl = {06890414},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0010-17/}
}
TY - JOUR AU - Benhamida, Ghania AU - Moussaoui, Toufik TI - Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus JO - Mathematica Bohemica PY - 2018 SP - 189 EP - 200 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0010-17/ DO - 10.21136/MB.2017.0010-17 LA - en ID - 10_21136_MB_2017_0010_17 ER -
%0 Journal Article %A Benhamida, Ghania %A Moussaoui, Toufik %T Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus %J Mathematica Bohemica %D 2018 %P 189-200 %V 143 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0010-17/ %R 10.21136/MB.2017.0010-17 %G en %F 10_21136_MB_2017_0010_17
Benhamida, Ghania; Moussaoui, Toufik. Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus. Mathematica Bohemica, Tome 143 (2018) no. 2, pp. 189-200. doi: 10.21136/MB.2017.0010-17
[1] Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher order $p$-Kirchhoff problems. Commun. Contemp. Math. 16 (2014), Article ID 1450002, 43 pages. | DOI | MR | JFM
[2] Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differential Equations. Abel Symposia, vol. {\it 7} H. Holden et al. Springer, Heidelberg (2012), 37-52. | DOI | MR | JFM
[3] Castro, A.: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980), Spain.
[4] Chen, J., Cheng, B., Tang, X.: New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional $p$-Laplacian with sign-changing potential. Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. | DOI | MR
[5] Chen, W., Deng, S.: Existence of solutions for a Kirchhoff type problem involving the fractional $p$-Laplace operator. Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 87, 8 pages. | DOI | MR | JFM
[6] Cheng, K., Gao, Q.: Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R^{N}}$. Avaible at | arXiv
[7] Clarke, D. C.: A variant of the Lusternik-Schnirelman theory. Math. J., Indiana Univ. 22 (1972), 65-74. | DOI | MR | JFM
[8] Colasuonno, F., Pucci, P.: Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5962-5974. | DOI | MR | JFM
[9] Corrêa, F. J. S. A., Figueiredo, G. M.: On an elliptic equation of $p$-Kirchhoff-type via variational methods. Bull. Aust. Math. Soc. 74 (2006), 263-277. | DOI | MR | JFM
[10] Corrêa, F. J. S. A., Figueiredo, G. M.: On a $p$-Kirchhoff equation via Krasnoselskii's genus. Appl. Math. Lett. 22 (2009), 819-822. | DOI | MR | JFM
[11] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573. | DOI | MR | JFM
[12] Dreher, M.: The Kirchhoff equation for the $p$-Laplacian. Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. | MR | JFM
[13] Goyal, S., Sreenadh, K.: Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions. Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. | DOI | MR | JFM
[14] Kavian, O.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Mathématiques et Applications. Springer, Paris (1993). | MR | JFM
[15] Krasnoselsk'ii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). | MR | JFM
[16] Bisci, G. Molica, Radulescu, V. D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). | DOI | MR | JFM
[17] Ourraoui, A.: On a $p$-Kirchhoff problem involving a critical nonlinearity. C. R. Math., Acad. Sci. Paris 352 (2014), 295-298. | DOI | MR | JFM
[18] Peral, I.: Multiplicity of solutions for the $p$-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997).
[19] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). | DOI | MR | JFM
[20] Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389 (2012), 887-898. | DOI | MR | JFM
[21] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367 (2015), 67-102. | DOI | MR | JFM
[22] Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007), 67-112. | DOI | MR | JFM
[23] Wang, L., Zhang, B.: Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional $p$-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. | MR | JFM
[24] Zhang, L., Chen, Y.: Infinitely many solutions for sublinear indefinite nonlocal elliptic equations perturbed from symmetry. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. | DOI | MR | JFM
Cité par Sources :