Keywords: completely regular frame; coherent frame; $z$-ideal; $d$-ideal; Stone-Čech compactification; booleanization
@article{10_21136_MB_2017_0009_16,
author = {Dube, Themba},
title = {When spectra of lattices of $z$-ideals are {Stone-\v{C}ech} compactifications},
journal = {Mathematica Bohemica},
pages = {323--336},
year = {2017},
volume = {142},
number = {3},
doi = {10.21136/MB.2017.0009-16},
mrnumber = {3695470},
zbl = {06770149},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0009-16/}
}
TY - JOUR AU - Dube, Themba TI - When spectra of lattices of $z$-ideals are Stone-Čech compactifications JO - Mathematica Bohemica PY - 2017 SP - 323 EP - 336 VL - 142 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0009-16/ DO - 10.21136/MB.2017.0009-16 LA - en ID - 10_21136_MB_2017_0009_16 ER -
Dube, Themba. When spectra of lattices of $z$-ideals are Stone-Čech compactifications. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 323-336. doi: 10.21136/MB.2017.0009-16
[1] Ball, R. N., Walters-Wayland, J.: $C$- and $C^*$-quotients in pointfree topology. Diss. Math. (Rozprawy Matematyczne) 412 (2002), 1-62. | DOI | MR | JFM
[2] Banaschewski, B.: Pointfree topology and the spectra of $f$-rings. Ordered algebraic structures. Proc. Curaçao Conf., 1995 C. W. Holland et al. Kluwer Academic Publishers, Dordrecht (1997), 123-148. | DOI | MR | JFM
[3] Banaschewski, B.: The Real Numbers in Pointfree Topology. Texts in Mathematics. Series B, vol. 12. Departamento de Matemática, Universidade de Coimbra, Coimbra (1997). | MR | JFM
[4] Dube, T.: Concerning $P$-frames, essential $P$-frames, and strongly zero-dimensional frames. Algebra Univers. 61 (2009), 115-138. | DOI | MR | JFM
[5] Dube, T.: Notes on pointfree disconnectivity with a ring-theoretic slant. Appl. Categ. Struct. 18 (2010), 55-72. | DOI | MR | JFM
[6] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hung. 129 (2010), 205-226. | DOI | MR | JFM
[7] Dube, T., Ighedo, O.: Comments regarding $d$-ideals of certain $f$-rings. J. Algebra Appl. 12 (2013), Article ID 1350008, 16 pages. | DOI | MR | JFM
[8] Dube, T., Ighedo, O.: On $z$-ideals of pointfree function rings. Bull. Iran. Math. Soc. 40 (2014), 657-675. | MR | JFM
[9] Dube, T., Ighedo, O.: Two functors induced by certain ideals of function rings. Appl. Categ. Struct. 22 (2014), 663-681. | DOI | MR | JFM
[10] Dube, T., Ighedo, O.: On lattices of $z$-ideals of function rings. Accepted in Math. Slovaca.
[11] Gruenhage, G.: Products of cozero complemented spaces. Houston J. Math. 32 (2006), 757-773. | MR | JFM
[12] Hager, A. W., Martínez, J.: Fraction-dense algebras and spaces. Can. J. Math. 45 (1993), 977-996. | DOI | MR | JFM
[13] Hager, A. W., Martínez, J.: Patch-generated frames and projectable hulls. Appl. Categ. Struct. 15 (2007), 49-80. | DOI | MR | JFM
[14] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). | MR | JFM
[15] Martínez, J., Zenk, E. R.: When an algebraic frame is regular. Algebra Univers. 50 (2003), 231-257. | DOI | MR | JFM
[16] Martínez, J., Zenk, E. R.: Dimension in algebraic frames II: Applications to frames of ideals in $C(X)$. Commentat. Math. Univ. Carol. 46 (2005), 607-636. | MR | JFM
[17] Picado, J., Pultr, A.: Frames and Locales. Topology without Points. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2012). | DOI | MR | JFM
[18] Plewe, T.: Localic triquotient maps are effective descent maps. Math. Proc. Camb. Philos. Soc. 122 (1997), 17-43. | DOI | MR | JFM
Cité par Sources :