Changing of the domination number of a graph: edge multisubdivision and edge removal
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 9-20
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For a graphical property $\mathcal {P}$ and a graph $G$, a subset $S$ of vertices of $G$ is a $\mathcal {P}$-set if the subgraph induced by $S$ has the property $\mathcal {P}$. The domination number with respect to the property $\mathcal {P}$, denoted by $\gamma _{\mathcal {P}} (G)$, is the minimum cardinality of a dominating $\mathcal {P}$-set. We define the domination multisubdivision number with respect to $\mathcal {P}$, denoted by ${\rm msd} _{\mathcal {P}}(G)$, as a minimum positive integer $k$ such that there exists an edge which must be subdivided $k$ times to change $\gamma _{\mathcal {P}} (G)$. In this paper \item {(a)} we present necessary and sufficient conditions for a change of $\gamma _{\mathcal {P}}(G)$ after subdividing an edge of $G$ once, \item {(b)} we prove that if $e$ is an edge of a graph $G$ then $\gamma _{\mathcal {P}} (G_{e,1}) \gamma _{\mathcal {P}} (G)$ if and only if $\gamma _{\mathcal {P}} (G-e) \gamma _{\mathcal {P}} (G)$ ($G_{e,t}$ denotes the graph obtained from $G$ by subdivision of $e$ with $t$ vertices), \item {(c)} we also prove that for every edge of a graph $G$ we have $\gamma _{\mathcal {P}}(G-e)\leq \gamma _{\mathcal {P}}(G_{e,3})\leq \gamma _{\mathcal {P}}(G-e) + 1$, and \item {(d)} we show that ${\rm msd}_{\mathcal {P}}(G) \leq 3$, where $\mathcal {P}$ is hereditary and closed under union with $K_1$.
For a graphical property $\mathcal {P}$ and a graph $G$, a subset $S$ of vertices of $G$ is a $\mathcal {P}$-set if the subgraph induced by $S$ has the property $\mathcal {P}$. The domination number with respect to the property $\mathcal {P}$, denoted by $\gamma _{\mathcal {P}} (G)$, is the minimum cardinality of a dominating $\mathcal {P}$-set. We define the domination multisubdivision number with respect to $\mathcal {P}$, denoted by ${\rm msd} _{\mathcal {P}}(G)$, as a minimum positive integer $k$ such that there exists an edge which must be subdivided $k$ times to change $\gamma _{\mathcal {P}} (G)$. In this paper \item {(a)} we present necessary and sufficient conditions for a change of $\gamma _{\mathcal {P}}(G)$ after subdividing an edge of $G$ once, \item {(b)} we prove that if $e$ is an edge of a graph $G$ then $\gamma _{\mathcal {P}} (G_{e,1}) \gamma _{\mathcal {P}} (G)$ if and only if $\gamma _{\mathcal {P}} (G-e) \gamma _{\mathcal {P}} (G)$ ($G_{e,t}$ denotes the graph obtained from $G$ by subdivision of $e$ with $t$ vertices), \item {(c)} we also prove that for every edge of a graph $G$ we have $\gamma _{\mathcal {P}}(G-e)\leq \gamma _{\mathcal {P}}(G_{e,3})\leq \gamma _{\mathcal {P}}(G-e) + 1$, and \item {(d)} we show that ${\rm msd}_{\mathcal {P}}(G) \leq 3$, where $\mathcal {P}$ is hereditary and closed under union with $K_1$.
DOI :
10.21136/MB.2017.0009-15
Classification :
05C69
Keywords: dominating set; edge subdivision; domination multisubdivision number; hereditary graph property
Keywords: dominating set; edge subdivision; domination multisubdivision number; hereditary graph property
@article{10_21136_MB_2017_0009_15,
author = {Samodivkin, Vladimir},
title = {Changing of the domination number of a graph: edge multisubdivision and edge removal},
journal = {Mathematica Bohemica},
pages = {9--20},
year = {2017},
volume = {142},
number = {1},
doi = {10.21136/MB.2017.0009-15},
mrnumber = {3619983},
zbl = {06738566},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0009-15/}
}
TY - JOUR AU - Samodivkin, Vladimir TI - Changing of the domination number of a graph: edge multisubdivision and edge removal JO - Mathematica Bohemica PY - 2017 SP - 9 EP - 20 VL - 142 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0009-15/ DO - 10.21136/MB.2017.0009-15 LA - en ID - 10_21136_MB_2017_0009_15 ER -
%0 Journal Article %A Samodivkin, Vladimir %T Changing of the domination number of a graph: edge multisubdivision and edge removal %J Mathematica Bohemica %D 2017 %P 9-20 %V 142 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0009-15/ %R 10.21136/MB.2017.0009-15 %G en %F 10_21136_MB_2017_0009_15
Samodivkin, Vladimir. Changing of the domination number of a graph: edge multisubdivision and edge removal. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 9-20. doi: 10.21136/MB.2017.0009-15
Cité par Sources :