The symmetry reduction of variational integrals
Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 291-328
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized. The article deals with one-dimensional variational integral subject to differential constraints, the Lagrange variational problem, that admits the Lie group of symmetries. Reduction to the orbit space is investigated in the absolute sense relieved of all accidental structures. In particular, the widest possible coordinate-free approach to the underdetermined systems of ordinary differential equations, Poincaré-Cartan forms, variations and extremals is involved for the preparation of the main task. The self-contained exposition differs from the common actual theories and rests only on the most fundamental tools of classical mathematical analysis, however, they are applied in infinite-dimensional spaces. The article may be of a certain interest for nonspecialists since all concepts of the calculus of variations undergo a deep reconstruction.
DOI :
10.21136/MB.2017.0008-17
Classification :
49N99, 49S05, 70H03
Keywords: Routh reduction; Lagrange variational problem; Poincaré-Cartan form; diffiety; standard basis; controllability; variation
Keywords: Routh reduction; Lagrange variational problem; Poincaré-Cartan form; diffiety; standard basis; controllability; variation
@article{10_21136_MB_2017_0008_17,
author = {Tryhuk, V\'aclav and Chrastinov\'a, Veronika},
title = {The symmetry reduction of variational integrals},
journal = {Mathematica Bohemica},
pages = {291--328},
publisher = {mathdoc},
volume = {143},
number = {3},
year = {2018},
doi = {10.21136/MB.2017.0008-17},
mrnumber = {3852296},
zbl = {06940885},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0008-17/}
}
TY - JOUR AU - Tryhuk, Václav AU - Chrastinová, Veronika TI - The symmetry reduction of variational integrals JO - Mathematica Bohemica PY - 2018 SP - 291 EP - 328 VL - 143 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0008-17/ DO - 10.21136/MB.2017.0008-17 LA - en ID - 10_21136_MB_2017_0008_17 ER -
%0 Journal Article %A Tryhuk, Václav %A Chrastinová, Veronika %T The symmetry reduction of variational integrals %J Mathematica Bohemica %D 2018 %P 291-328 %V 143 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0008-17/ %R 10.21136/MB.2017.0008-17 %G en %F 10_21136_MB_2017_0008_17
Tryhuk, Václav; Chrastinová, Veronika. The symmetry reduction of variational integrals. Mathematica Bohemica, Tome 143 (2018) no. 3, pp. 291-328. doi: 10.21136/MB.2017.0008-17
Cité par Sources :