An application of the generalized Bessel function
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 75-84
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce and study some new subclasses of starlike, convex and close-to-convex functions defined by the generalized Bessel operator. Inclusion relations are established and integral operator in these subclasses is discussed.
We introduce and study some new subclasses of starlike, convex and close-to-convex functions defined by the generalized Bessel operator. Inclusion relations are established and integral operator in these subclasses is discussed.
DOI : 10.21136/MB.2017.0006-16
Classification : 30C45, 33C10
Keywords: Bessel operator; starlike function; convex function; close-to-convex function
@article{10_21136_MB_2017_0006_16,
     author = {Darwish, Hanan and Lashin, Abdel Moneim and Hassan, Bashar},
     title = {An application of the generalized {Bessel} function},
     journal = {Mathematica Bohemica},
     pages = {75--84},
     year = {2017},
     volume = {142},
     number = {1},
     doi = {10.21136/MB.2017.0006-16},
     mrnumber = {3619988},
     zbl = {06738571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-16/}
}
TY  - JOUR
AU  - Darwish, Hanan
AU  - Lashin, Abdel Moneim
AU  - Hassan, Bashar
TI  - An application of the generalized Bessel function
JO  - Mathematica Bohemica
PY  - 2017
SP  - 75
EP  - 84
VL  - 142
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-16/
DO  - 10.21136/MB.2017.0006-16
LA  - en
ID  - 10_21136_MB_2017_0006_16
ER  - 
%0 Journal Article
%A Darwish, Hanan
%A Lashin, Abdel Moneim
%A Hassan, Bashar
%T An application of the generalized Bessel function
%J Mathematica Bohemica
%D 2017
%P 75-84
%V 142
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-16/
%R 10.21136/MB.2017.0006-16
%G en
%F 10_21136_MB_2017_0006_16
Darwish, Hanan; Lashin, Abdel Moneim; Hassan, Bashar. An application of the generalized Bessel function. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 75-84. doi: 10.21136/MB.2017.0006-16

[1] Bansal, D., Raina, R. K.: Some sufficient conditions for starlikeness using subordination criteria. Bull. Math. Anal. Appl. (electronic only) 2 (2010), 1-6. | MR | JFM

[2] Baricz, Á.: Some inequalities involving generalized Bessel functions. Math. Inequal. Appl. 10 (2007), 827-842. | DOI | MR | JFM

[3] Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. 73 (2008), 155-178. | MR | JFM

[4] Baricz, Á., Deniz, E., Çağlar, M., Orhan, H.: Differential subordinations involving generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 1255-1280. | DOI | MR | JFM

[5] Baricz, Á., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21 (2010), 641-653. | DOI | MR | JFM

[6] Bernardi, S. D.: Convex and starlike univalent functions. Trans. Am. Math. Soc. 135 (1969), 429-446. | DOI | MR | JFM

[7] Deniz, E.: Convexity of integral operators involving generalized Bessel functions. Integral Transforms Spec. Funct. 24 (2013), 201-216. | DOI | MR | JFM

[8] Deniz, E., Orhan, H., Srivastava, H. M.: Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. Taiwanese J. Math. 15 (2011), 883-917. | DOI | MR | JFM

[9] Dziok, J., Srivastava, H. M.: Classes of analytic functions with the generalized hypergeometric function. Appl. Math. Comput. 103 (1999), 1-13. | DOI | MR | JFM

[10] Kamali, M., Srivastava, H. M.: A sufficient condition for starlikeness of analytic functions of Koebe type. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Article No. 57, 8 pages. | MR | JFM

[11] Libera, R. J.: Some radius of convexity problems. Duke Math. J. 31 (1964), 143-158. | DOI | MR | JFM

[12] Libera, R. J.: Some classes of regular univalent functions. Proc. Am. Math. Soc. 16 (1965), 755-758. | DOI | MR | JFM

[13] Livingston, A. E.: On the radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 17 (1966), 352-357. | DOI | MR | JFM

[14] Miller, S.: Differential inequalities and Carathéodory functions. Bull. Am. Math. Soc. 81 (1975), 79-81. | DOI | MR | JFM

[15] Miller, S. S., Mocanu, P. T.: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 65 (1978), 289-305. | DOI | MR | JFM

[16] Nunokawa, M., Sokół, J.: An improvement of Ozaki's condition. Appl. Math. Comput. 219 (2013), 10768-10776. | DOI | MR | JFM

[17] Nunokawa, M., Sokół, J.: Remarks on some starlike functions. J. Inequal. Appl. (electronic only) 2013 (2013), Article 593, 8 pages. | DOI | MR | JFM

[18] Siregar, S.: The starlikeness of analytic functions of Koebe type. Math. Comput. Modelling 54 (2011), 2928-2938. | DOI | MR | JFM

[19] Sivasubramanian, S., Darus, M., Ibrahim, R. W.: On the starlikeness of certain class of analytic functions. Math. Comput. Modelling 54 (2011), 112-118. | DOI | MR | JFM

[20] Sokół, J., Nunokawa, M.: On some sufficient conditions for univalence and starlikeness. J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 282, 11 pages. | DOI | MR | JFM

[21] Srivastava, H. M., Lashin, A. Y.: Subordination properties of certain classes of multivalently analytic functions. Math. Comput. Modelling 52 (2010), 596-602. | DOI | MR | JFM

[22] Tang, H., Deniz, E.: Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Math. Sci. Ser. B, Engl. Ed. 34 (2014), 1707-1719. | DOI | MR | JFM

[23] Tang, H., Srivastava, H. M., Deniz, E., Li, S.-H.: Third-order differential superordination involving the generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 1669-1688. | DOI | MR | JFM

[24] Watson, G. N.: A Treatis on The Theory of Bessel Functions. Cambridge University Press Cambridge, London (1966). | MR | JFM

Cité par Sources :