Antiassociative groupoids
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
DOI :
10.21136/MB.2017.0006-15
Classification :
08A99, 20N02, 68Q99, 68R15, 68T15
Keywords: groupoid; unification
Keywords: groupoid; unification
@article{10_21136_MB_2017_0006_15,
author = {Braitt, Milton and Hobby, David and Silberger, Donald},
title = {Antiassociative groupoids},
journal = {Mathematica Bohemica},
pages = {27--46},
year = {2017},
volume = {142},
number = {1},
doi = {10.21136/MB.2017.0006-15},
mrnumber = {3619985},
zbl = {06738568},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/}
}
TY - JOUR AU - Braitt, Milton AU - Hobby, David AU - Silberger, Donald TI - Antiassociative groupoids JO - Mathematica Bohemica PY - 2017 SP - 27 EP - 46 VL - 142 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/ DO - 10.21136/MB.2017.0006-15 LA - en ID - 10_21136_MB_2017_0006_15 ER -
Braitt, Milton; Hobby, David; Silberger, Donald. Antiassociative groupoids. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46. doi: 10.21136/MB.2017.0006-15
Cité par Sources :