Keywords: groupoid; unification
@article{10_21136_MB_2017_0006_15,
author = {Braitt, Milton and Hobby, David and Silberger, Donald},
title = {Antiassociative groupoids},
journal = {Mathematica Bohemica},
pages = {27--46},
year = {2017},
volume = {142},
number = {1},
doi = {10.21136/MB.2017.0006-15},
mrnumber = {3619985},
zbl = {06738568},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/}
}
TY - JOUR AU - Braitt, Milton AU - Hobby, David AU - Silberger, Donald TI - Antiassociative groupoids JO - Mathematica Bohemica PY - 2017 SP - 27 EP - 46 VL - 142 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/ DO - 10.21136/MB.2017.0006-15 LA - en ID - 10_21136_MB_2017_0006_15 ER -
Braitt, Milton; Hobby, David; Silberger, Donald. Antiassociative groupoids. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46. doi: 10.21136/MB.2017.0006-15
[1] Baader, F., Snyder, W.: Unification theory. Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). | DOI | JFM
[2] Braitt, M. S., Hobby, D., Silberger, D.: Completely dissociative groupoids. Math. Bohem. 137 (2012), 79-97. | MR | JFM
[3] Braitt, M. S., Silberger, D.: Subassociative groupoids. Quasigroups Relat. Syst. 14 (2006), 11-26. | MR | JFM
[4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78 Springer, New York (1981). | DOI | MR | JFM
[5] Drápal, A., Kepka, T.: Sets of associative triples. Eur. J. Comb. 6 (1985), 227-231. | DOI | MR | JFM
[6] Herbrand, J.: Recherches sur la théorie de la démonstration. Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. | MR | JFM
[7] Huet, G. P.: Résolution d'équations dans des langages d'ordre $1,2,\dots,\omega$. Thèse d'État, Université de Paris VII (1976), French.
[8] Ježek, J., Kepka, T.: Medial groupoids. Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. | MR | JFM
[9] Knuth, D. E.: The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). | MR | JFM
[10] Robinson, J. A.: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12 (1965), 23-41. | DOI | MR | JFM
[11] Stanley, R. P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). | DOI | MR | JFM
Cité par Sources :