Antiassociative groupoids
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
DOI : 10.21136/MB.2017.0006-15
Classification : 08A99, 20N02, 68Q99, 68R15, 68T15
Keywords: groupoid; unification
@article{10_21136_MB_2017_0006_15,
     author = {Braitt, Milton and Hobby, David and Silberger, Donald},
     title = {Antiassociative groupoids},
     journal = {Mathematica Bohemica},
     pages = {27--46},
     year = {2017},
     volume = {142},
     number = {1},
     doi = {10.21136/MB.2017.0006-15},
     mrnumber = {3619985},
     zbl = {06738568},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/}
}
TY  - JOUR
AU  - Braitt, Milton
AU  - Hobby, David
AU  - Silberger, Donald
TI  - Antiassociative groupoids
JO  - Mathematica Bohemica
PY  - 2017
SP  - 27
EP  - 46
VL  - 142
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/
DO  - 10.21136/MB.2017.0006-15
LA  - en
ID  - 10_21136_MB_2017_0006_15
ER  - 
%0 Journal Article
%A Braitt, Milton
%A Hobby, David
%A Silberger, Donald
%T Antiassociative groupoids
%J Mathematica Bohemica
%D 2017
%P 27-46
%V 142
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0006-15/
%R 10.21136/MB.2017.0006-15
%G en
%F 10_21136_MB_2017_0006_15
Braitt, Milton; Hobby, David; Silberger, Donald. Antiassociative groupoids. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46. doi: 10.21136/MB.2017.0006-15

[1] Baader, F., Snyder, W.: Unification theory. Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). | DOI | JFM

[2] Braitt, M. S., Hobby, D., Silberger, D.: Completely dissociative groupoids. Math. Bohem. 137 (2012), 79-97. | MR | JFM

[3] Braitt, M. S., Silberger, D.: Subassociative groupoids. Quasigroups Relat. Syst. 14 (2006), 11-26. | MR | JFM

[4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78 Springer, New York (1981). | DOI | MR | JFM

[5] Drápal, A., Kepka, T.: Sets of associative triples. Eur. J. Comb. 6 (1985), 227-231. | DOI | MR | JFM

[6] Herbrand, J.: Recherches sur la théorie de la démonstration. Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. | MR | JFM

[7] Huet, G. P.: Résolution d'équations dans des langages d'ordre $1,2,\dots,\omega$. Thèse d'État, Université de Paris VII (1976), French.

[8] Ježek, J., Kepka, T.: Medial groupoids. Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. | MR | JFM

[9] Knuth, D. E.: The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). | MR | JFM

[10] Robinson, J. A.: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12 (1965), 23-41. | DOI | MR | JFM

[11] Stanley, R. P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). | DOI | MR | JFM

Cité par Sources :