Nonlinear differential monomials sharing two values
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 339-361.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using the notion of weighted sharing of values which was introduced by Lahiri (2001), we deal with the uniqueness problem for meromorphic functions when two certain types of nonlinear differential monomials namely $\smash {h^{n}h^{(k)}}$ $(h=f,g)$ sharing a nonzero polynomial of degree less than or equal to $3$ with finite weight have common poles and obtain two results. The results in this paper significantly rectify, improve and generalize the results due to Cao and Zhang (2012).
DOI : 10.21136/MB.2016.0080-13
Classification : 30D35
Keywords: uniqueness; meromorphic function; weighted sharing; nonlinear differential polynomials
@article{10_21136_MB_2016_0080_13,
     author = {Majumder, Sujoy},
     title = {Nonlinear differential monomials sharing two values},
     journal = {Mathematica Bohemica},
     pages = {339--361},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {2016},
     doi = {10.21136/MB.2016.0080-13},
     mrnumber = {3557584},
     zbl = {06644018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0080-13/}
}
TY  - JOUR
AU  - Majumder, Sujoy
TI  - Nonlinear differential monomials sharing two values
JO  - Mathematica Bohemica
PY  - 2016
SP  - 339
EP  - 361
VL  - 141
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0080-13/
DO  - 10.21136/MB.2016.0080-13
LA  - en
ID  - 10_21136_MB_2016_0080_13
ER  - 
%0 Journal Article
%A Majumder, Sujoy
%T Nonlinear differential monomials sharing two values
%J Mathematica Bohemica
%D 2016
%P 339-361
%V 141
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0080-13/
%R 10.21136/MB.2016.0080-13
%G en
%F 10_21136_MB_2016_0080_13
Majumder, Sujoy. Nonlinear differential monomials sharing two values. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 339-361. doi : 10.21136/MB.2016.0080-13. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0080-13/

Cité par Sources :