Keywords: paraconsistent logic; algebraic logic; dualities for ordered structures
@article{10_21136_MB_2016_0079_14,
author = {Quiroga, Ver\'onica and Fern\'andez, V{\'\i}ctor},
title = {A topological duality for the $F$-chains associated with the logic $C_\omega $},
journal = {Mathematica Bohemica},
pages = {225--241},
year = {2017},
volume = {142},
number = {3},
doi = {10.21136/MB.2016.0079-14},
mrnumber = {3695464},
zbl = {06770143},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0079-14/}
}
TY - JOUR AU - Quiroga, Verónica AU - Fernández, Víctor TI - A topological duality for the $F$-chains associated with the logic $C_\omega $ JO - Mathematica Bohemica PY - 2017 SP - 225 EP - 241 VL - 142 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0079-14/ DO - 10.21136/MB.2016.0079-14 LA - en ID - 10_21136_MB_2016_0079_14 ER -
%0 Journal Article %A Quiroga, Verónica %A Fernández, Víctor %T A topological duality for the $F$-chains associated with the logic $C_\omega $ %J Mathematica Bohemica %D 2017 %P 225-241 %V 142 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0079-14/ %R 10.21136/MB.2016.0079-14 %G en %F 10_21136_MB_2016_0079_14
Quiroga, Verónica; Fernández, Víctor. A topological duality for the $F$-chains associated with the logic $C_\omega $. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 225-241. doi: 10.21136/MB.2016.0079-14
[1] Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974). | MR | JFM
[2] Carnielli, W. A., Marcos, J.: Limits for paraconsistent calculi. Notre Dame J. Formal Logic 40 (1999), 375-390. | DOI | MR | JFM
[3] Celani, S. A., Cabrer, L. M., Montangie, D.: Representation and duality for Hilbert algebras. Cent. Eur. J. Math. 7 (2009), 463-478. | DOI | MR | JFM
[4] Celani, S. A., Montangie, D.: Hilbert algebras with supremum. Algebra Univers. 67 (2012), 237-255. | DOI | MR | JFM
[5] Costa, N. C. A. da: On the theory of inconsistent formal systems. Notre Dame J. Formal Logic 15 (1974), 497-510. | DOI | MR | JFM
[6] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990). | MR | JFM
[7] Fidel, M. M.: The decidability of the calculi ${\cal C}_n$. Rep. Math. Logic 8 (1977), 31-40. | MR | JFM
[8] Fidel, M. M.: An algebraic study of logic with constructible negation. Proc. 3rd Brazilian Conf. Mathematical Logic, Recife, 1979 (A. I. Arruda et al., eds.) Soc. Brasil. Lógica, Sao Paulo (1980), 119-129. | MR | JFM
[9] Jansana, R., Rivieccio, U.: Priestley duality for $N4$-lattices. Proc. 8th Conf. European Society for Fuzzy Logic and Technology, 2013, pp. 263-269.
[10] Mandelker, M.: Relative annihilators in lattices. Duke Math. J. 37 (1970), 377-386. | DOI | MR | JFM
[11] Odintsov, S. P.: Constructive Negations and Paraconsistency. Trends in Logic---Studia Logica Library 26. Springer, New York (2008). | DOI | MR | JFM
[12] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. (3) 24 (1972), 507-530. | DOI | MR | JFM
[13] Quiroga, V.: An alternative definition of $F$-structures for the logic $C_1$. Bull. Sect. Log., Univ. Łódź, Dep. Log. 42 (2013), 119-134. | MR | JFM
[14] Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne 41. Panstwowe Wydawnictwo Naukowe, Warsaw (1963). | MR | JFM
Cité par Sources :